

JG U

SFB 1044 Institut für Kernphysik

RiSMA

Fundamental weak interaction studies with electron beams

Frank Maas (Helmholtz Institute Mainz, GSI Darmstadt and Johannes Gutenberg University Mainz)

Physics of fundamental Symmetries and Interactions - PSI2016

HIM

High Precision Determination of $sin^2(\theta_w)$

Running of $sin^2(\theta_w)$

Sensitivity to new physics

Experimental Method

ECT*-Workshop:Physics beyond the standard model and precision nucleon structure Measurements, 01 Aug 2016 to 05 Aug 2016, Villa Tambosi, Trento, Organisers: F. Maas, K. Kumar, P. Souder, M. Vanderhaghen http://www.ectstar.eu/node/1682

Direct observation versus precision measurements

Summary: Measurements of sin² θ _{W(effective)}

Møller Scattering

Purely Leptonic

- Coherent quarks in p
- in operation now
 2(2C_{1u}+C_{1d})

• Isoscaler quark scattering • (2C_{1u}-C_{1d})+Y(2C_{2u}-C_{2d})

Atomic Parity Violation

- Coherent quarks in entire nucleus
- Nuclear structure uncertainties
- -376 C_{1u} 422 C_{1d}

Neutrino Scattering

- Quark scattering (from nucleus)
- Weak charged and neutral current difference

7 Courtesy of P. Reimer and R. Arnold

", running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_W(\mu)$

Precision measurements and quantum corrections:

running α running $\sin^2 \theta_w(\mu)$ Universal quantum corrections: can be absorbed into a
scale dependent, "running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_w(\mu)$

Sensitivity to new physics beyond the Standard Model

JGU

Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

Dark Photon, Z-Boson

Holdom 86

A portal to relate the dark sector to the SM world (coupling ~ ϵ^2)

Features à la Arkani-Hamed: A theory of Dark Matter

- More than one Dark Matter particle \rightarrow Dark Sector
- dm + dm \rightarrow e+e- explains positron excess
- Astrophysical anomalies (PAMELA, FERMI, DAMA/LIBRA, INTEGRAL, ...) suggest dark photon mass on GeV mass scala (and lighter than 2M_p)

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of >3σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

044

NA48/2 Updated Bounds on Dark Photon g_µ-2 discrepancy solution ruled out Assumes BR(Z_d→ e+e-) ~1

H. Davoudiasl, W. Marciano

6

Running $\sin^2 \theta_w$ and Dark Parity Violation

JGU

Extra Z-Boson

Supersymmetry

Example: Supersymmetric standard model extensions Kurylov, Ramsey-Musolf, Su (2003), updated

Ramsey-Musolf and Su, Phys. Rep. 456 (2008)

Complementary access by weak charges of proton and electron

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)	
APV Cs	0.58 %	0.0019	32.3 TeV	
E158	14 %	0.0013	17.0 TeV	
Qweak I	19 %	0.0030	17.0 TeV	
Qweak final	4.5 %	0.0008	33 TeV	
PVDIS	4.5 %	0.0050	7.6 TeV	
SoLID	0.6 %	0.00057	22 TeV	
MOLLER	2.3 %	0.00026	39 TeV	
P2	2.0 %	0.00036	49 TeV	
PVES ¹² C	0.3 %	0.0007	49 TeV	

Experimental Method: Parity Violating Electron Scattering

IG U

Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Proton: special case

Proton Weak	charge: Q _w (p)	=	1 – 4 sin² θ _w	
Error:	ΔQ _w (p)	=	4 ∆sin² θ _w	
Rel. error:	$\Delta Q_w(p)/Q_w(p)$	=	4/((1/sin² θ_W) –	4) ($\Delta \sin^2 \theta_w / \sin^2 \theta_w$)
Rel. error	$\Delta \sin^2 \theta_w / \sin^2 \theta_w$		($(1/\sin^2 \theta_w) - 4$)/4
Example:	sin² θ _w (50 MeV)	=	0.238	
	4/($(1/\sin^2 \theta_W) - 4$)	~	20	
	ΔQ _w (p)/Q _w (p)	=	2% from	Experiment
	$\Delta \sin^2 \theta_w / \sin^2 \theta_w$	=	0.1 % same	precision as LEP, SLAC
Neutron Wea	<mark>k charge</mark> : ∆Q _w (p)/Q _w (n)	=	$\Delta \sin^2 \theta_{\rm W} / \sin^2 \theta$	w

SFB 1044

 $\sigma \sim \mathcal{M} \mathcal{M}^* \text{ Phasespace} \\ \sim (j_{\mu} \frac{1}{Q^2} J^{\mu}) (j_{\mu} \frac{1}{Q^2} J^{\mu})^* \\ j_{\mu} \sim \overline{e} \gamma_{\mu} e \text{ Vector Current}$

$$I_{\gamma}^{\mu} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle \\
 = \overline{\mathcal{P}} \left[\gamma^{\mu} F_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} F_{2} \right] \mathcal{P}$$

$$\tilde{q}^{d}_{V} = \tau_3 - 2q^d \sin^2(\theta_W)$$

$$\begin{split} \tilde{J}_{Z}^{\mu} &\sim \left\langle N | \tilde{q}^{\mu} \overline{u} \, \gamma_{\mu} \, u + \tilde{q}^{d} \overline{d} \, \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \, \gamma_{\mu} s | N' \right\rangle \\ &= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P} \end{split}$$

JGU

Parity Violating Asymmetry in elastic electron proton scattering

JGU

Parity violating cross section asymmetry

$$A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$

$$A_{\rm RL} = \underbrace{A_{\rm V} + A_{\rm A}}_{= A_0} + A_{\rm S} \begin{cases} A_{\rm V} = -a\rho_{eq}' \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ A_{\rm A} = a \frac{(1 - 4\sin^2\theta_W)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 + \tau)}G_M^p \tilde{G}_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \\ A_{\rm S} = a\rho_{eq}' \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{cases} e^{-\frac{1}{2}}$$

 $a = -G_F q^2 / 4\pi \alpha \sqrt{2}, \ \ \tau = -q^2 / 4M_p^2, \ \ \epsilon = [1 + 2(1 + \tau)\tan^2{\theta}/2]^{-1}$

SFB 1044

Institut für Kernphysik

JG U

FB' Institut für Kernphys

044

Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
polarisation measurement hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

Conceptually very simple experiments

A = $(N^+-N^-)/(N^++N^-)$ $\Delta A = (N^++N^-)^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Apparative (false) asymmetries:

PVeS Experiment Summary

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

JG U P2-Precision in sin² θ_W

	Total	Statistics	Polarization	Apparative	FF	Re(□ _{yzA})
∆sin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
∆A ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

JG U P2-Kollaboration

- · Collaboration was enlarged during the past years
- Integreating detectors, magnetic spectrometer, theory, elektronics, target, polarimetry

Hubert Spiesberger Razvan Bucoveanu Stephan Wezorke Frank Maas Sebastian Baunack Dominik Becker Kathrin Gerz Thomas Jennewein Kurt Aulenbacher Dr. Valery Tioukine Matthias Molitor Niklaus Berger Iurii Sorokin Alexey Tyukin Marco Zimmermann Silviu Covrig Sandesh Gopinath Krishna Kumar Paul Souder Michael Gericke Institut für Kernphysik, Universität Mainz Institut für Physik, Universität Mainz Department of Physics and Astronomy, Stony Brook, NY Jefferson Lab, Newport News, VA University of Manitoba, Winnipeg Syracuse University, Syracuse, NY

THE LOW-ENERGY FRONTIER

OF THE STANDARD MODEL

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

• Contributions to $\Delta sin^2 \Theta_W$ for 35° central scattering angle, E=150 MeV, 10000 h of data taking

JGU

Qweak (1GeV) @ Jlab Proton weak charge (4%) Quartz Cerenkov Bars Toroid spectrometer <0> = 7.9° ± 3° ϕ coverage = 50% of 2π $I_{\text{heam}} = 180 \,\mu\text{A}$ Integrated rate = 6.4 GHz Beam Polarization = 88% Target = 35 cm LH₂ Cryopower = 3 kW Electron beam Trigger Scintillator LH₂ Target Vertical Drift Chambers Collimators **Toroidal Magnet** Red = low-current tracking mode only Spectrometer

Institut für Kernphysik

Left Baffle Assembly

Coil / Cryostat

Fixed Supports

JG U MESA: Beam parameter SFB 1044 Institut für Kernphysik

Beam Energy ERL/EB [MeV]	105/155 (105/205)		
Operation mode	1300 MHz, c.w.		
Elektron-sources	 Polarised : NEA GaAsP/GaAs superlattice , 200keV (?) unpolarised KCsSb, 200keV 		
Bunch Charge EB/ERL [pC] 7.7pC= <mark>10mA</mark> @1300MHz	0.15/0.77 (0.15/7.7)		
Norm. Emittance EB/ERL [µm]	0.1/<0.5 (0.1/<1)		
Spin Polarisation (EB-mode only)	> 0.85		
Recirculations	2 (3)		
Beampower at Exp. ERL/EB [kW]	100/22.5 (1050/30)		
R.fPower installed [kW]	140 (180)		

Other Measurements: Carbon, Lead Introduction Achievable Precision Experimental Realization Conclusion

- Basic Setup
- Geant4 RayTracing Plots
- Separation of Excited States

EXPERIMENTAL REALIZATION

Neutron Skin for beginner

Where do the neutrons go?

Pressure forces neutrons out against surface tension

ETTINASFIENTI

Measurement of neutron distribution in nuclei deceisive for Neutron star properties

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

symmetry energy

$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
slope parameter

$$\underbrace{Slope parameter}_{0.3} = \underbrace{\left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho_0}$$

X. Roca-Maza et al., PRL 106 (2011) 252501

M. Thiel

WHY?

70

angle [degree]

10

ICETTINA SFIENTI

80

90

100

θ [degree]

Full azimuthal coverage⇔4xstat

Assuming same PREX luminosity: $\Delta \theta = 4^{\circ}$: Rate=8.25 GHz, A_{PV}=0.66 ppm **1440h** $\rightarrow \delta R_n/R_n = 0.5\%$ (assuming 1% syst. $\delta A_{PV}/A_{PV}$)

World data of $sin^2\Theta_w$ including EIC projections

- 200 days of dedicated run
- Can reach similar precision to SoLID measurement
- Interesting Q² region never been measured or planned

Yuxiang Zhao (SBU)

JGU

Institut für Kernphysik

- Parity violating electron scattering: "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC
- Determination of $sin^2(\theta_w)$ with high precision (same as Z-pole)
- Qweak results from Jlab
- P2-Experiment (proton weak charge) in Mainz under preparation New MESA energy recovering accelerator at 155 MeV, target precision is 1.7% in Qweak i.e. 0.13% in sin²(θ_w), Sensitivity to new physics up to a scale of 49 TeV
- Much more physics from PV electron scattering
- Together with Moeller@Jlab (electron weak charge) and SOLID@Jlab (quark weak charge) very sensitive test of standard model and possibility to narrow in on Standard Model Extension