The search for an electric dipole moment of the neutron at PSI

Elise Wursten

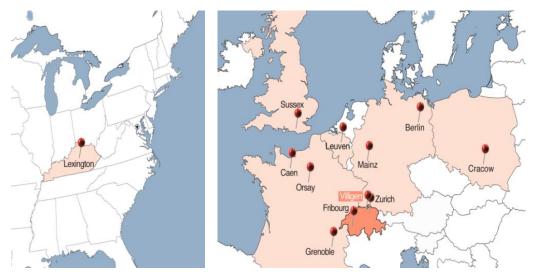
PSI2016 October 17, 2016, Villigen, Switzerland

Speaking on behalf of the nEDM collaboration

KU

The collaboration

- 13 Institutions
- 7 Countries
- 48 Members
- 10 PhD students



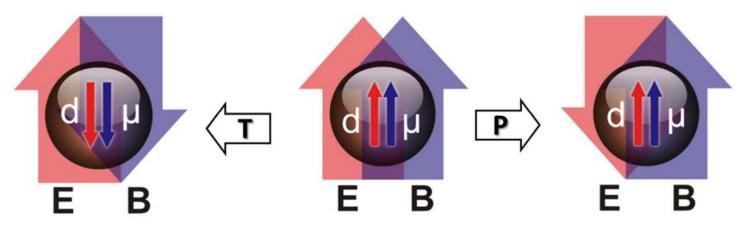
Contents

- Motivation
- Experimental method & setup
- Current status
 - Statistical sensitivity
 - Systematic effects
 - Extra physics results
- Conclusion & outlook

Motivation

CP violation

Permanent Electric Dipole Moment (EDM) of a particle violates CP symmetry if CPT symmetry is conserved



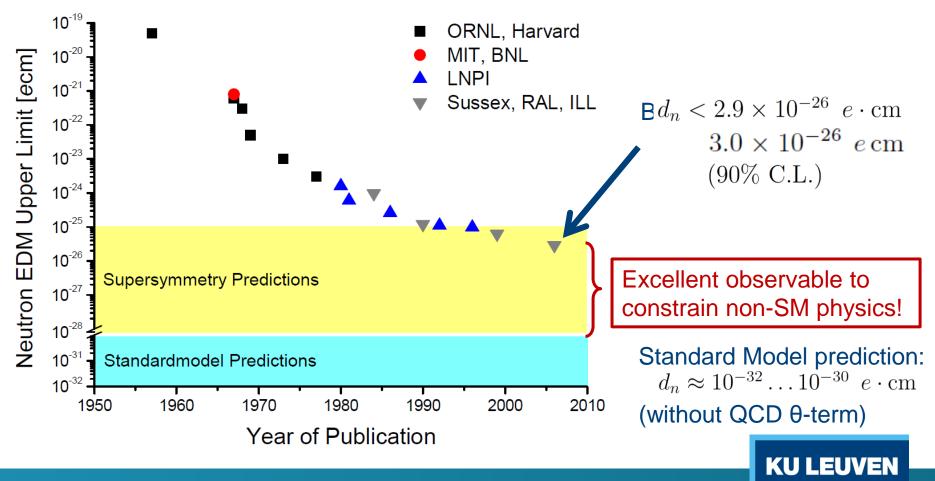
$$\mathcal{H} = -\mu \cdot \frac{\vec{S}}{|\vec{S}|} \cdot \vec{B} - d \cdot \frac{\vec{S}}{|\vec{S}|} \cdot \vec{E}$$

(non-relativistic interaction Hamiltonian)

KU LEUV

Motivation

Constrain BSM physics



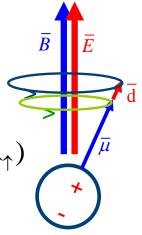
[1] Pendlebury et al., Phys. Rev. D 92 (9), 092003.

Experimental method & setup

General idea:

1. Measure Larmor precession frequency with parallel E and B

$$\hbar\omega_{\uparrow\uparrow} = 2(\mu_n B_{\uparrow\uparrow} + d_n E_{\uparrow\uparrow})$$



2. Measure Larmor precession frequency with antiparallel E and B $\hbar \omega_{\uparrow\downarrow} = 2(\mu_n B_{\uparrow\downarrow} - d_n E_{\uparrow\downarrow})$

3. Take the difference!

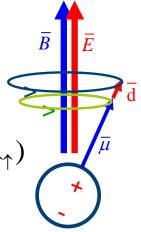
$$d_{n} = \frac{\hbar \Delta \omega - 2\mu_{n}(B_{\uparrow\uparrow} - B_{\uparrow\downarrow})}{2(E_{\uparrow\uparrow} + E_{\uparrow\downarrow})} = \frac{\hbar \Delta \omega}{4|E|}$$

Experimental method & setup

General idea:

1. Measure Larmor precession frequency with parallel E and B

$$\hbar\omega_{\uparrow\uparrow} = 2(\mu_n B_{\uparrow\uparrow} + d_n E_{\uparrow\uparrow})$$



2. Measure Larmor precession frequency with antiparallel E and B $\hbar \omega_{\uparrow\downarrow} = 2(\mu_n B_{\uparrow\downarrow} - d_n E_{\uparrow\downarrow})$

3. Take the difference!

$$d_{n} = \frac{\hbar \Delta \omega - 2\mu_{n} (B_{\uparrow\uparrow} - B_{\uparrow\downarrow})}{2(E_{\uparrow\uparrow} + E_{\uparrow\downarrow})} = \frac{1}{2}$$

Knowledge of magnetic field is important!!!

KUL

Experimental method & setup

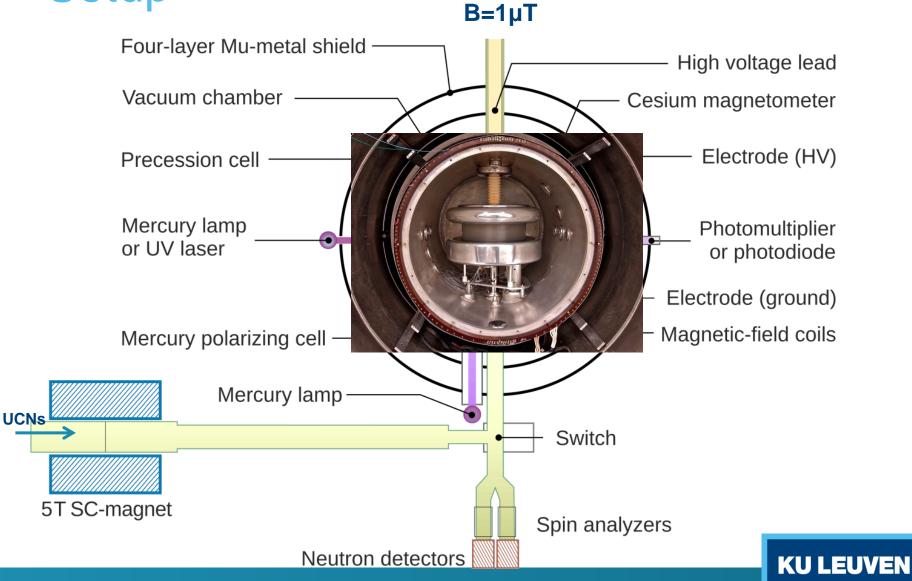
We use ultra cold neutrons (UCNs)

- UCNs have very low energies: ~100neV
- Speed less than 7m/s
- Full reflection at certain surfaces
- Can be guided and stored in a vessel!

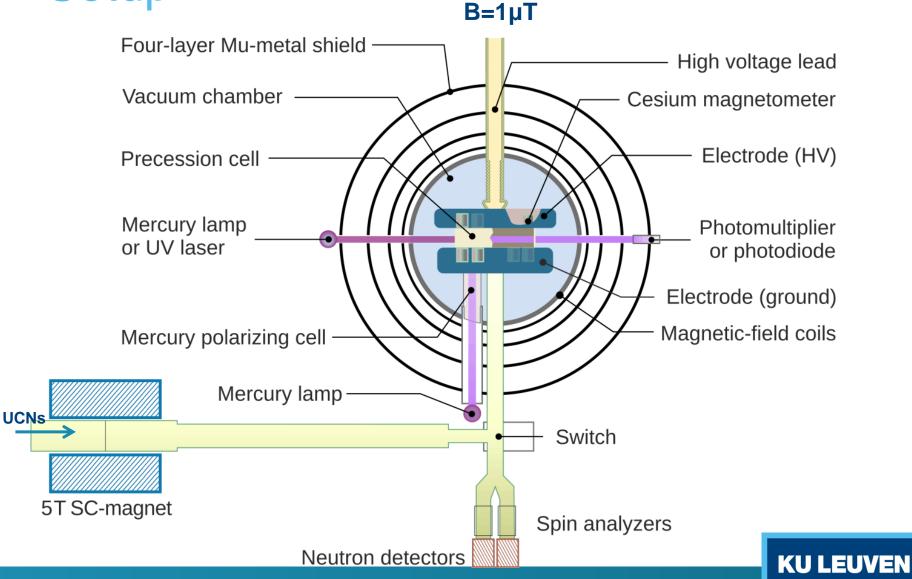
Setup was moved from ILL to PSI where they built a dedicated UCN source

For more info on the UCN source, see the poster of Nicolas Hild!

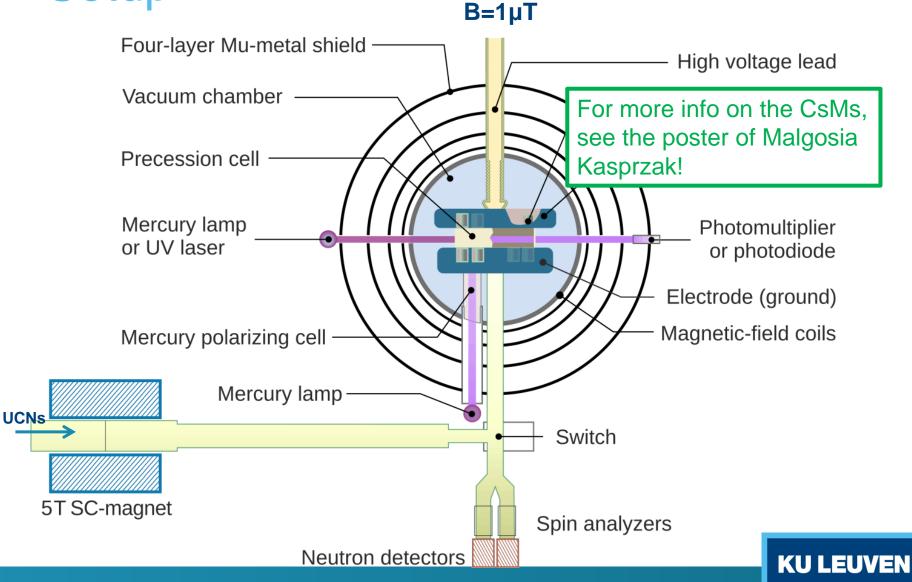
Setup



Setup



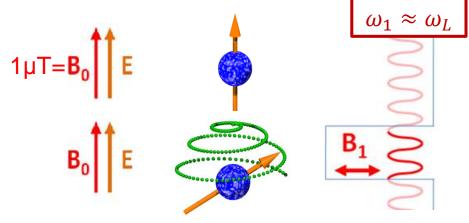
Setup



Ramsey's method of separated oscillatory fields:

1. Polarize neutrons in direction of B_0 . Choose frequency ω_1 of external clock.

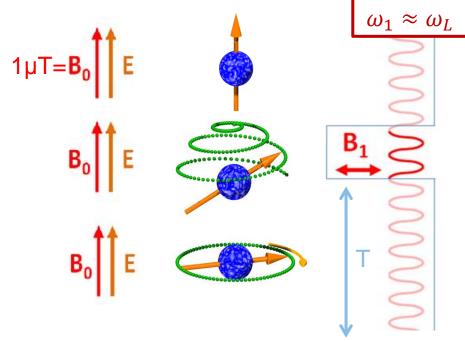
Ramsey's method of separated oscillatory fields:



1. Polarize neutrons in direction of B_0 . Choose frequency ω_1 of external clock.

2. Apply rotating (ω_1) magnetic field B₁ perpendicular to B₀ for 2s. Neutron spin is flipped.

Ramsey's method of separated oscillatory fields:

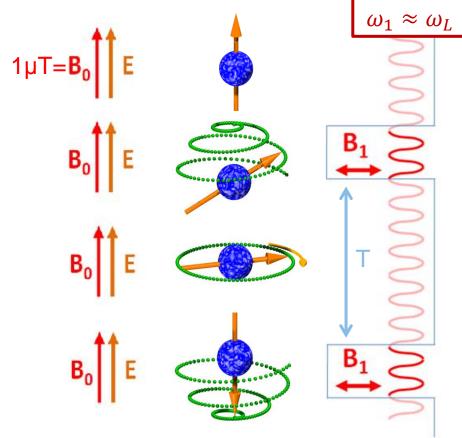


1. Polarize neutrons in direction of B_0 . Choose frequency ω_1 of external clock.

2. Apply rotating (ω_1) magnetic field B₁ perpendicular to B₀ for 2s. Neutron spin is flipped.

3. Neutrons precess freely during T, typically 180s.

Ramsey's method of separated oscillatory fields:



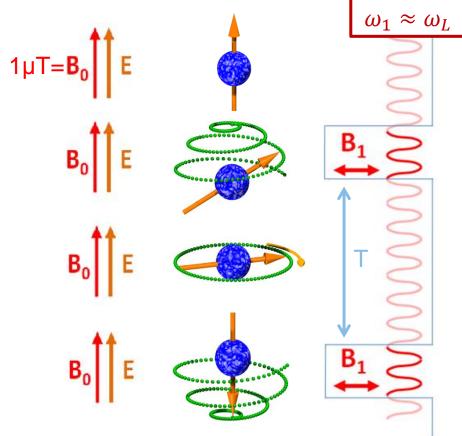
1. Polarize neutrons in direction of B_0 . Choose frequency ω_1 of external clock.

2. Apply rotating (ω_1) magnetic field B₁ perpendicular to B₀ for 2s. Neutron spin is flipped.

3. Neutrons precess freely during T, typically 180s.

4. Second spin flip pulse. Direction & amplitude of flip depend on phase built up between neutron spin and ω_1 .

Ramsey's method of separated oscillatory fields:



1. Polarize neutrons in direction of B_0 . Choose frequency ω_1 of external clock.

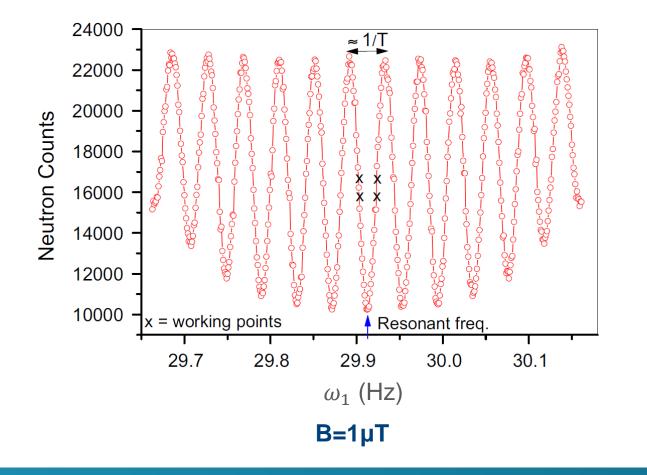
2. Apply rotating (ω_1) magnetic field B₁ perpendicular to B₀ for 2s. Neutron spin is flipped.

3. Neutrons precess freely during T, typically 180s.

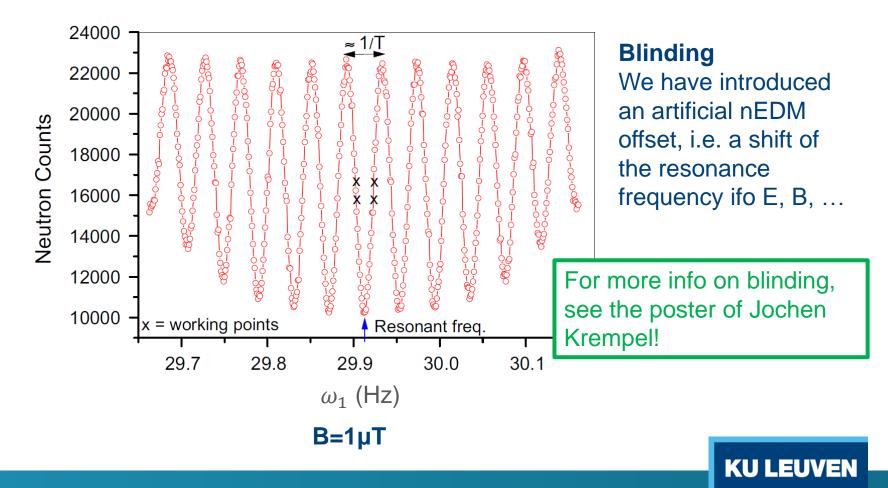
4. Second spin flip pulse. Direction & amplitude of flip depend on phase built up between neutron spin and ω_1 .

5. Count spin up/down neutrons in function of ω_1

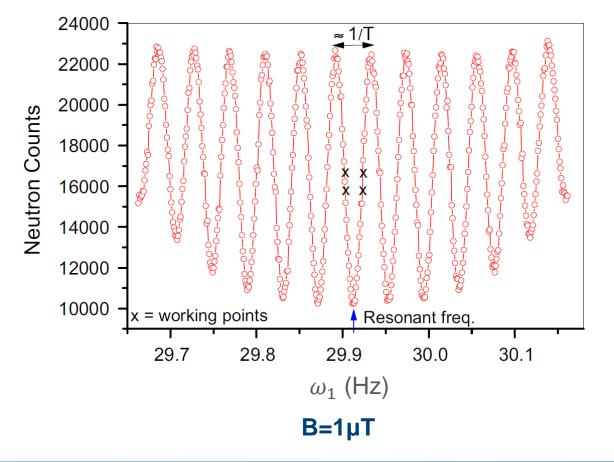
Ramsey's method of separated oscillatory fields:



Ramsey's method of separated oscillatory fields:



Ramsey's method of separated oscillatory fields:



Uncertainty on d_n due to counting statistics:

$$\sigma_{d_n} = \frac{\hbar}{2E\alpha T\sqrt{N}}$$

E: electric fieldα: visibility (polarization)T: free precession timeN: neutron counts

Statistical sensitivity

Statistical uncertainty:
$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

How did we improve the sensitivity in the last years?

Parameter	2014	2015	2016	UCN source improvements
Ν	6000	10000	18000	
E	10kV/cm	11kV/cm	11kV/cm	
т	180s	180s	180s	
α	0.55-0.65	0.75-0.80	0.75-0.80	

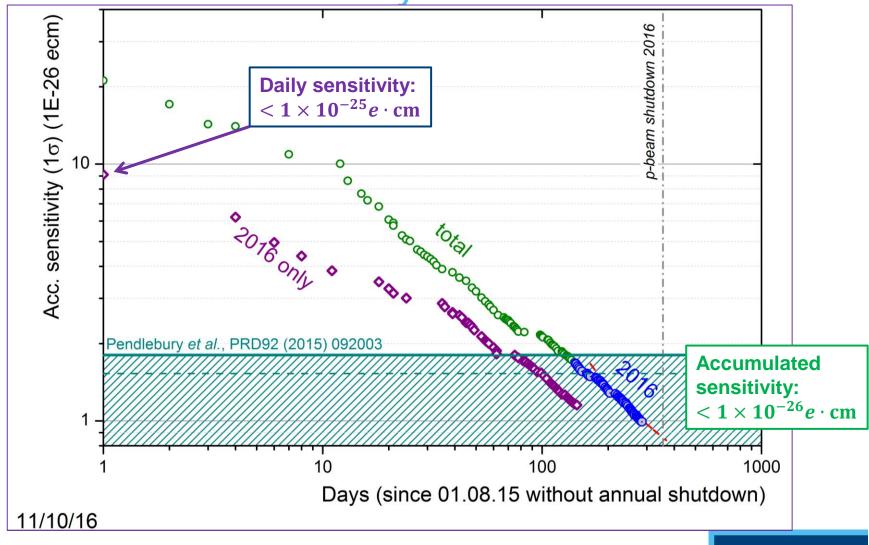
Statistical sensitivity

Statistical uncertainty:
$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

How did we improve the sensitivity in the last years?

Parameter	2014	2015	2016	
Ν	6000	10000	18000	UCN source improvements
E	10kV/cm	11kV/cm	11kV/cm	
Т	180s	180s	180s	
α	0.55-0.65	0.75-0.80	0.75-0.80	
New magnetic field optimisation procedure, see the poster of Elise Wursten!			e	KU LEUVEN

Statistical sensitivity



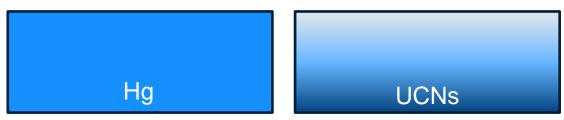
Knowledge of magnetic field is important:

$$d_{n} = \frac{\hbar \Delta \omega - 2\mu_{n} (B_{\uparrow\uparrow} - B_{\uparrow\downarrow})}{2(E_{\uparrow\uparrow} + E_{\uparrow\downarrow})}$$

We have a co-habiting Hg magnetometer to monitor drifts => introduces systematic effects

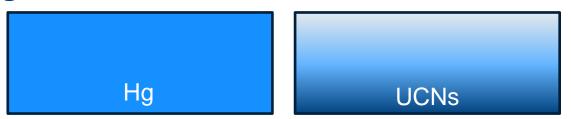
Effects due to the Hg magnetometer

1. Difference in **density**, UCNs are sensitive to **vertical** gradients



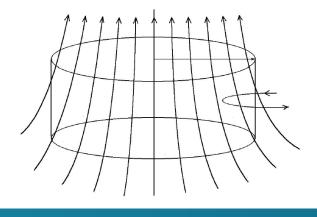
Effects due to the Hg magnetometer

1. Difference in **density**, UCNs are sensitive to **vertical** gradients



2. Geometric phase effect: interplay between motional magnetic field and magnetic field gradients

$$B_v = \frac{1}{c^2} E \times v$$



Effects due to the Hg magnetometer

1. Difference in **density**, UCNs are sensitive to **vertical** gradients

- 2. Geometric phase effect: interplay between motional magnetic field and magnetic field gradients
- 3. Difference in **adiabaticity**, UCNs are sensitive to **transverse field gradients**

KU LEU

Crossing point analysis (RAL-Sussex) to take these effects into account

Crossing point analysis:

1. Density difference => Shift of center of gravity: $R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \pm \frac{h}{|B|} \frac{\partial B_z}{\partial z} \right) \text{ for } B_0 \text{ up/down}$

Crossing point analysis:

- 1. Density difference => Shift of center of gravity: $R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \pm \frac{h}{|B|} \frac{\partial B_z}{\partial z} \right) \text{ for } B_0 \text{ up/down}$
- 2. Geometric Phase effect: :

$$\Delta f_{\rm Hg} = \frac{\gamma_{\rm Hg}^2 D^2}{32\pi c^2} \frac{\partial B_z}{\partial z} E$$

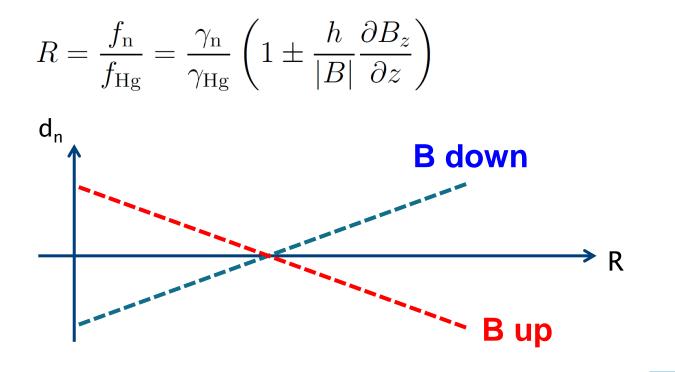
which translates into a false nEDM:

$$d^{\text{false}} = \frac{\partial B_z}{\partial z} 1.150 \times 10^{-27} e \cdot \text{cm}/(\text{pT/cm})$$

Crossing point analysis:

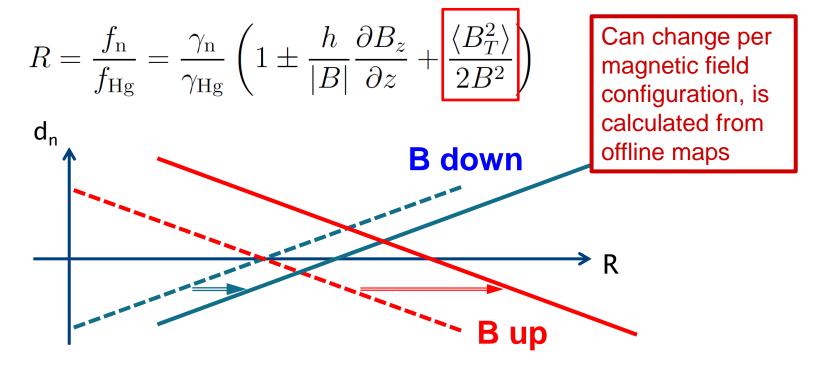
Density difference => Shift of center of gravity: 1. $R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \pm \frac{h}{|B|} \frac{\partial B_z}{\partial z} \right) \text{ for } B_0 \text{ up/down}$ d_n ∱ B down Geometric Phase effect: : 2. $\Delta f_{\rm Hg} = \frac{\gamma_{\rm Hg}^2 D^2}{32\pi c^2} \frac{\partial B_z}{\partial z} E$ R which translates into a false nEDM: $\frac{\partial B_z}{\partial z} = 0$ B up $d^{\text{false}} = \frac{\partial B_z}{\partial z} 1.150 \times 10^{-27} e \cdot \text{cm}/(\text{pT/cm})$

Crossing point analysis:



Crossing point analysis:

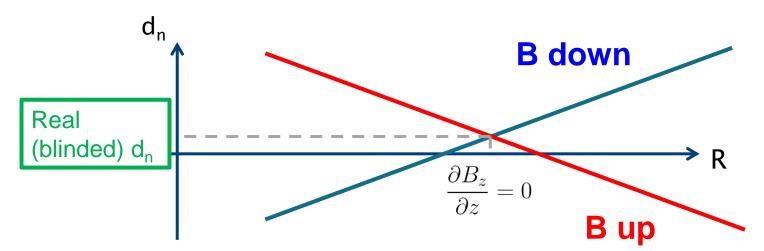
3. Adiabaticity difference: Hg atoms sample the field nonadiabatically $\|\langle \vec{B} \rangle\|$, whereas neutrons are adiabatic $\langle \|\vec{B}\|\rangle$



Crossing point analysis:

3. Adiabaticity difference: Hg atoms sample the field nonadiabatically $\|\langle \vec{B} \rangle \|$, whereas neutrons are adiabatic $\langle \| \vec{B} \| \rangle$

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \pm \frac{h}{|B|} \frac{\partial B_z}{\partial z} + \frac{\langle B_T^2 \rangle}{2B^2} \right)$$



$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

- 1. Gravitational shift
- 2. Transverse components
- 3. HgM light shift
- 4. Earth's rotation

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

1. Gravitational shift

$$\delta_{\text{Grav}}^{\uparrow/\downarrow} = \pm \frac{h}{B_0} \frac{\partial B}{\partial z}$$

Due to difference (h) in center of mass for neutrons and mercury atoms combined with the presence of vertical magnetic field gradients.

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

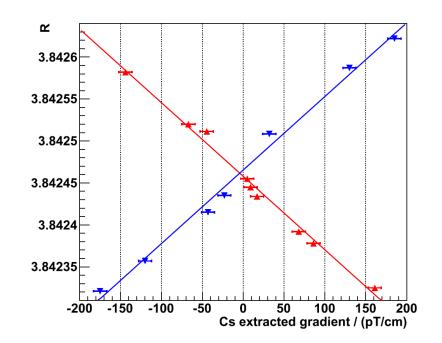
Systematic effects:

1. Gravitational shift

$$\delta_{\text{Grav}}^{\uparrow/\downarrow} = \pm \frac{h}{B_0} \frac{\partial B}{\partial z}$$

Measure at

- different magnetic field gradients
- B₀ up and B₀ down
 Extract R-value at 0 gradient



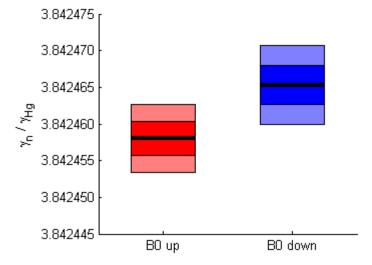
KU LEUV

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

1. Gravitational shift

$$\delta_{\text{Grav}}^{\uparrow/\downarrow} = \pm \frac{h}{B_0} \frac{\partial B}{\partial z}$$

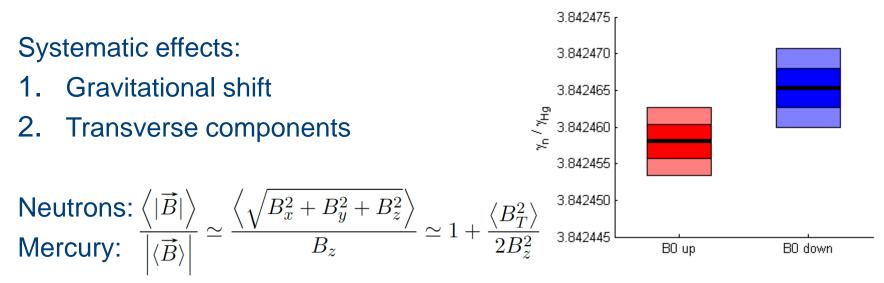


Measure at

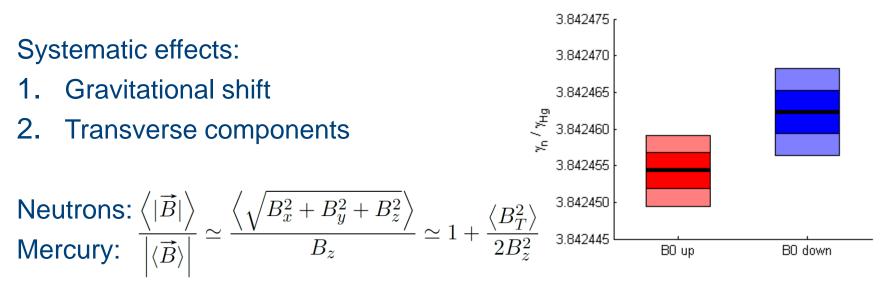
- different magnetic field gradients
- B₀ up and B₀ down

Extract R-value at 0 gradient

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$



$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$



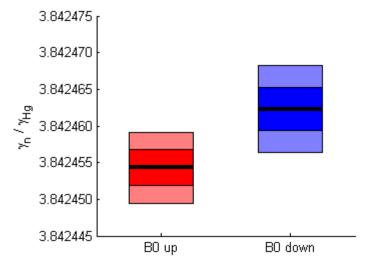
Field maps provide $\langle B_T^2 \rangle$ for B₀ up and down

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

- 1. Gravitational shift
- 2. Transverse components
- 3. HgM light shift

 f_{Hg} depends on UV light intensity and possibly on the angle between \vec{k} and \vec{B} .



KUL

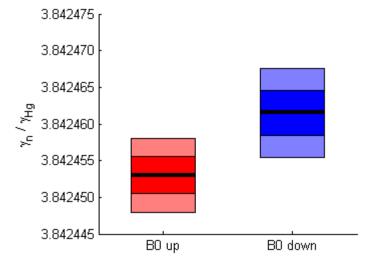
$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

- 1. Gravitational shift
- 2. Transverse components
- 3. HgM light shift

 f_{Hg} depends on UV light intensity and possibly on the angle between \vec{k} and \vec{B} .

Dedicated measurements have been done in May 2014 to investigate this effect.

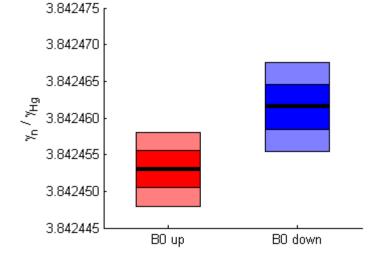


KU

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:
1. Gravitational shift
2. Transverse components
2. HaM light shift

- 3. HgM light shift
- 4. Earth's rotation

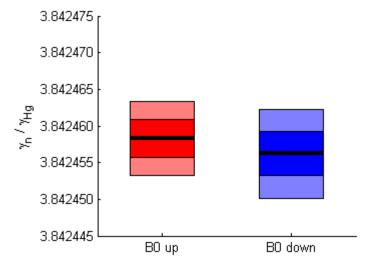


Frequency shift due to rotation of the earth

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Systematic effects:

- 1. Gravitational shift
- 2. Transverse components
- 3. HgM light shift
- 4. Earth's rotation



KU LEU

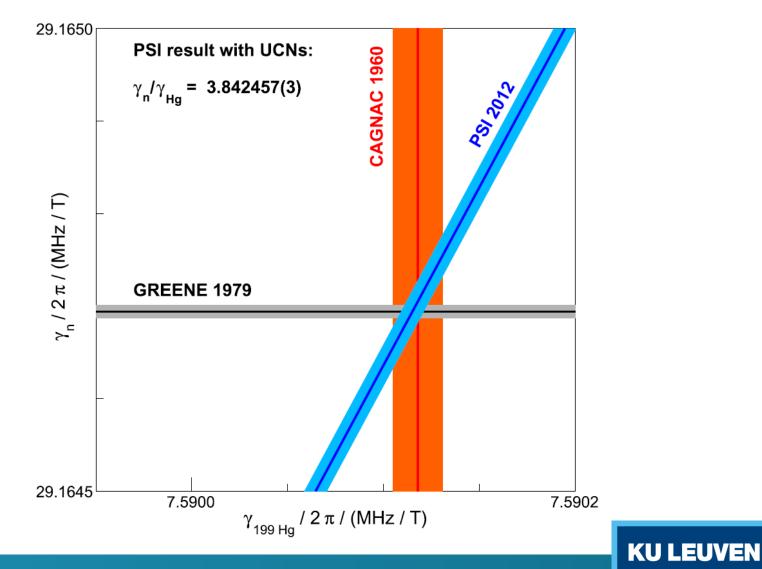
Frequency shift due to rotation of the earth

$$\delta_{\text{Earth}}^{\uparrow/\downarrow} = \mp \left(\frac{f_{\text{Earth}}}{f_{\text{n}}} + \frac{f_{\text{Earth}}}{f_{\text{Hg}}}\right) \sin(\lambda) = \mp 1.4 \times 10^{-6}$$

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} (1 + \delta_{\rm Grav} + \delta_{\rm T} + \delta_{\rm Light} + \delta_{\rm Earth})$$

Final result:

 $\gamma_n / \gamma_{Hg} = 3.8424574(30)$ [0.78 ppm].



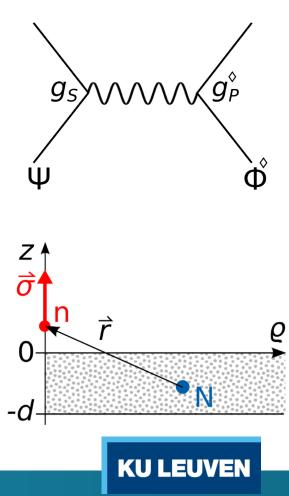
How can you test for axion-like particles?

- Short range spin-dependent interaction could be mediated by an axion or ALP.
- For example: Interaction between unpolarized particle Ψ and a polarized particle Φ . Potential caused by $g_s g_p$ -coupling is

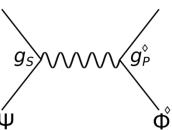
$$V(\boldsymbol{r}) = g_S g_P^{\diamond} \frac{(\hbar c)^2}{8\pi m^{\diamond} c^2} (\hat{\boldsymbol{\sigma}}^{\diamond} \cdot \hat{\boldsymbol{r}}) \left(\frac{1}{r\lambda} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

with interaction range λ .

 Gives rise to a pseudomagnetic field b in case of a polarised neutron interacting with an unpolarised bulk material.



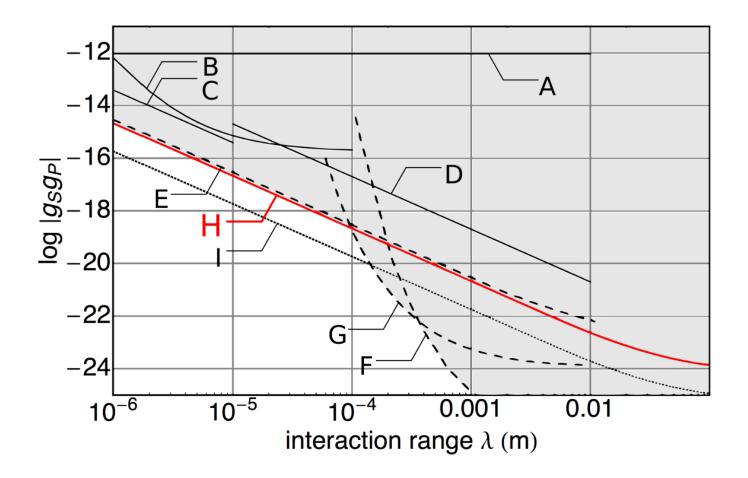
How can you test for axion-like particles?

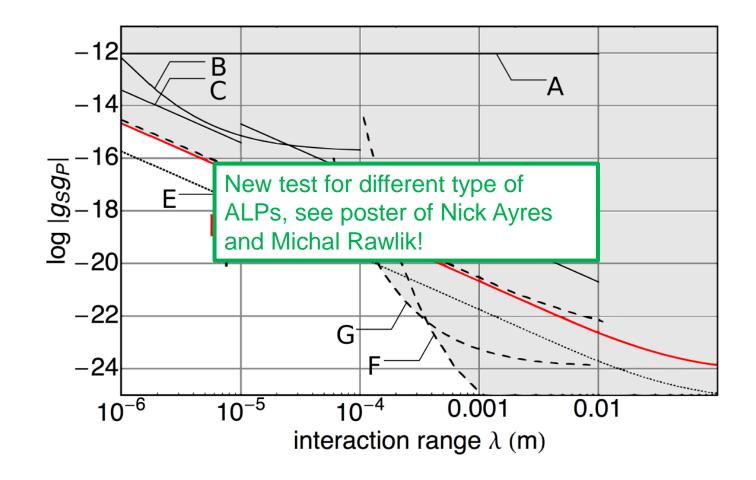


The field pseudomagnetic field *b* at the vessel surfaces points in opposite directions.

- No shift in Larmor frequency for the Hg atoms.
- UCN density increases towards the bottom, so depending on the sign on the main field, the Larmor precession frequency will increase of decrease.
- Hence R will be shifted: $R^{\uparrow\downarrow} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \pm \frac{b}{B_0}\right)$

Luckily, we already measured R for B₀ up and down!





Conclusion

We have introduced blinding since September 2015

Our apparatus is functioning well:

- Sensitivity is excellent:
 - Current per day $1 \times 10^{-25} e \cdot cm$
 - Accumulated below $1 \times 10^{-26} e \cdot cm$

• Systematic effect are under control $< 5 \times 10^{-27} e \cdot cm$

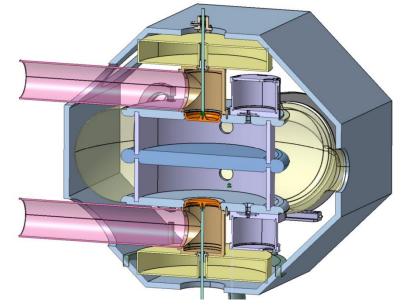
nEDM operation will come to an end in 2017

n2EDM will be installed and commissioned in 2018/19 n2EDM will start data taking in 2020

n2EDM sensitivity will intrinsically be more than 5 times better than that of nEDM and will cut into the low $10^{-27}e \cdot \text{cm}$ region

For more information about n2EDM, see the following posters:

- HgM laser: Sybille Komposch
- Magnetometry: Georg Bison
- DAQ: Jochen Krempel
- KM current source: Peter Koss
- E-field studies: Jacob Thorne



Thank you for your attention!

