• Wie ist das wetter?

- Wie ist das wetter?
- → Mostly sunny with a chance for Discovery!

Bernhard Lauss email:

"I don't want to bother you with a summary of the workshop or similar, but an outlook where low-energy fundamental physics will go in the next, say up to 10 years might be something you would also find exciting [] boring [] impossible [] great, and I want to do []"

→ much easier than a workshop summary ...

Physics at different Energy Scales

First a look at the Past \rightarrow Present

"We hold these conferences every 3 years which allows time for new results to be available" K. Kirch

What's the scorecard:

First a look at the Past \rightarrow Present

"We hold these conferences every 3 years which allows time for new results to be available" K. Kirch

What's the scorecard:

Based on Titles of Talks:

Status Results 4

First a look at the Past \rightarrow Present

"We hold these conferences every 3 years which allows time for new results to be available" K. Kirch

What's the scorecard:

Based on Abstracts and actual Talks:

<u>Status</u>	<u>Results</u>
48	6

Hard Experiments often take TIME

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration,* J. Baron,¹ W. C. Campbell,² D. DeMille,³† J. M. Doyle,¹† G. Gabrielse,¹† Y. V. Gurevich,¹‡ P. W. Hess,¹ N. R. Hutzler,¹ E. Kirilov,³§ I. Kozyryev,³|| B. R. O'Leary,³ C. D. Panda,¹ M. F. Parsons,¹ E. S. Petrik,¹ B. Spaun,¹ A. C. Vutha,⁴ A. D. West³

The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e , in the range of 10^{-27} to 10^{-30} $e \cdot \text{cm}$. The EDM is an asymmetric charge distribution along the electron spin (\overrightarrow{S}) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29}$ $e \cdot \text{cm}$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29}$ $e \cdot \text{cm}$ with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

- PSI 2013: Oct. 16 20, 2013
- Submitted Nov. 7, 2013

muonic deuterium

the size of the deuteron

 $\rightarrow 5.9\sigma$ discrepancy between $r_d(\mu d)$ and CODATA-2014.

[R. Pohl et al. (CREMA-coll.), Laser spectroscopy of muonic deuterium, Science 353, 669 (2016)]

We have developed a new method for measuring the neutron lifetime

Halbach array

- We have demonstrated an in situ active neutron detector that allows for many systematic tests and enables the measurement of corrections for cleaning effectiveness and phase space evolution
- We have made a measurement of τ_n for the first time with no extrapolation $878.8\pm2.6_{\text{stat}}\pm0.6_{\text{sys}}$

MEGII: $\mu^+ \rightarrow e^+ \gamma$ decay search

a new upper limit for the branching ratio of B(μ⁺ -> e⁺ γ) < 4.2 x 10⁻¹³ at 90% C.L. has been established (a factor 30 improvement with respect to the previous MEGA experiment and also the strongest bound on any forbidden decay particle)

Presentation by

Anita Govaerts-Van Loon + Stefan Ritt

Almost Results:

- Determine pieces of cryostat that came from single pour and assume independent
- Cut up LH₂ cryostat

NPDGAMMA

(AGAIN)

- Design targets to replicate background with parahydrogen vessel full
- Composite target to mimic neutron capture on original LH₂ vessel

- New false asymmetry makes for an "exciting" data analysis
- After 15 years in the making, NPDGamma will be presenting the final result soon

Graphics by D. Blyth

Presentation by Nadia Fomin

Almost Results:

In Addition ...

 Many beautiful (experimentally) technical talks and posters on exciting developments of hardware and techniques

• Now to the Outlook ...

• First the Bad News:

•Now the Good News:

- •Now the Good News:
 - Last time (2013) Precision, Intensity, Low energy Frontier was a ripple ...

-At Present (2016) – Precision, Intensity, Low energy Frontier is more of a ground swell ...

ground swell: a broad deep undulation of the ocean caused by an often distant gale or seismic disturbance

-Next time (2019) - Precision, Intensity, Low energy Frontier WILL be more of a serious California wave:

• There will be 3 major intriguing BSM results:

- There will be 3 major intriguing BSM results:
 - 1. One will be a statistical fluctuation

- There will be 3 major intriguing BSM results:
 - 1. One will be a statistical fluctuation
 - 2. One will be a new systematic effect

- There will be 3 major intriguing BSM results:
 - 1. One will be a statistical fluctuation
 - 2. One will be a new systematic effect
 - 3. One will be a Discovery!

- There will be 3 major intriguing BSM results:
 - 1. One will be a statistical fluctuation
 - 2. One will be a new systematic effect
 - 3. One will be a Discovery!

Of course any decent theoretical prediction should include an error bar: = ± 1

