

M. Beck

Institut für Physik, Johannes Gutenberg-Universität Mainz

for the aSPECT collaboration

The aSPECT experiment

Systematic uncertainties Examples and solutions B-field ratio Backscattering Edge effect Conclusion Decay of the free neutron

JOHANNES GUTENBERG

Overview *a***SPECT**

Schematic and set-up at PF1b at the Institut Laue Langevin

Measurement of the β -v angular correlation via the energy spectrum of the decay protons

2.) Proton detection using a silicon drift detector (SDD).

Measurement of the β -v angular correlation via the energy spectrum of the decay protons

- 1.) Energy determination using a retardation spectrometer (MAC-E filter).
- 2.) Proton detection using a silicon drift detector (SDD).
- 3.) Integrate counts in the proton region:

Recoil energy spectrum

JOHANNES GUTENBERG

Recoil energy spectrum

Successfull beam time at the cold neutron beam line PF1B at ILL in 2013! Understand and determine the systematic effects!

JOHANNES GUTENBERG

- Procedure: Measure the effect
 - Determine its energy dependence (recoil energy or ret. voltage)
 - Include the energy dependence as a correction in the fit
 - DAQ effects from data & offline measurements
 magnetic field ratio r_B NMR & Hall probe measurements
 background from data & dedicated measurements
 pile-up/upper integration limit from pulse FADC data
 backscattering/lower integration limit from data & simulations
 retardation voltage U_A high precision DVM, KP data, simulations
 edge effect semi-analytical calculations, simulations, data
 fields in DV

Multidimensional fit including the systematic corrections and their uncertainties To give the fully correlated uncertainty of *a*

For details of the fit see the poster by A. Wunderle

Nuclear Magnetic Resonance measurement

Problem: Lower integration limit cuts off backscatter tail \Rightarrow proton losses Solution: Use extrapolation of measured pulse height spectrum

Retardation voltage dependent correction to the recoil proton spectrum Size of the shift: ~0.5e-3 \leftrightarrow 0.2 Hz $\delta a/a = O(2\%)$

M. Beck

PSI Workshop 2016

18.10.2016

Problem: Backscattering in the deadlayer \Rightarrow proton losses Solution: Tracking simulation using SRIM

PSI Workshop 2016

18.10.2016

30

00000

В

(for enhanced edge effect)

50

0-30

First order correction

PSI Workshop 2016

Config 1, 3, 7:	Normal data taking
Config 2, 4, 5, 6:	Dedicated tests with enhanced systematics

Config 1, 3, 7:	Normal data taking
Config 2, 4, 5, 6:	Dedicated tests with enhanced systematics

Include first order corrections for edge effect, field corrections in DV

Config 1, 3, 7:	Normal data taking
Config 2, 4, 5, 6:	Dedicated tests with enhanced systematics

Include first order corrections for edge effect, field corrections in DV

Config 1, 3, 7: Normal data taking Config 2, 4, 5, 6: Dedicated tests with enhanced systematics

preliminary! Include first order corrections for edge effect, field corrections in DV

Finalize the investigation of the systematic effects

- DAQ effects
 - magnetic field ratio r_{B}
- background
 - pile-up/upper integration limit
 - backscattering/lower integration limit
 - retardation voltage $U_A \longrightarrow$ field simulations have started
 - edge effect
 - fields in DV

- \rightarrow new simulations have started
- \rightarrow tracking simulations to be started
- \rightarrow consistency tests

misc. stuff

And include all in the final fit (including their uncertainties) to get the correlated uncertainty on the β -v angular correlation coefficient *a*.

Present status: $\Delta a/a < 2\%$ is feasible

Further details available at the *a*SPECT posters

The collaboration

M. Simson, ILL T. Soldner, ILL O. Zimmer, ILL R. Virot, ILL R. Maisonobe, ILL A. Wunderle, Mainz W. Heil, Mainz G. Konrad, Wien, S. Baessler, U of Virginia M. Beck, Mainz Ch. Schmidt, Mainz

From left to right

plus

F. Glück, KIT

- J. Haack, Mainz
- R. Horn, Mainz
- K. U. Ross, Mainz
- D. Stipp, Mainz
- J. Kahlenberg, Mainz
- E. Bickmann, Mainz
- M. Klopf, Wien

Supported by DFG SPP1491

M. Beck

JG**U**

WIEN

UNIVERSITY VIRGINIA