Towards precision beta-decay measurements with laser-cooled argon-35

Florence Lenaers¹, Rohan Glover² and Thierry Bastin¹

² Centre for Quantum Dynamics, Griffith University, 4111 Nathan, Australia

Motivation

Testing fundamental physics

quark-mass eigenstates

Unitarity under scrutiny

Is the CKM matrix unitary, as the Standard Model claims it is?

$$\sum_{q=d,s,b} |V_{uq}|^2 \ {\stackrel{\bf 2}{•}} \ 1 \xrightarrow{\text{experiments [1]}} \sum_{q=d,s,b} |V_{uq}|^2 = 1.00008 \pm 0.00056.$$

A promising candidate [2]

$^{35}_{18}\mathrm{Ar}_{17}$

 $^{35}_{17}\mathrm{Cl}_{18} + \mathrm{e}^{+} + \nu_{\mathrm{e}}$

Nuclear T = 1/2mirror transition Providing the β -asymmetry parameter A_{β} is determined with a precision of 0.5%:

ΔV_{ud}	$(\Delta V_{ud})^{ m limit}$	factor $\Delta \mathcal{F} t$
0.0007	0.0004	4.8

 $0.0004 \approx$ twice the uncertainty obtained from the set of superallowed Fermi decays.

Key objectives -

- \square Produce a sample of **polarized** nuclei/atoms and measure its polarization with high precision.
- $\hfill \square$ Achieve high counting statistics.

Toolbox

Atoms are best served cold.

Laser cooling & trapping techniques provide backing-free, cold, localized sources of atoms:

ideal for precision tests.

A tale of two isotopes

 $^{40}\mathrm{Ar}$: development of an offline magneto-optical trap (MOT) setup

 \Rightarrow crucial to developing **optimized** apparatus & techniques for future experimental work with ³⁵Ar.

 $^{35}\mathrm{Ar}$: theoretical & numerical investigation of methods for spin-polarizing an atomic sample & for measuring its resulting degree of polarization

- \Rightarrow preliminary to future experimental work with $^{35}\mathrm{Ar},$
- \Rightarrow of general interest for studying interactions between multilevel atoms & multiple laser beams.

- J. C. Hardt, I. S. Towner, Ann. Phys. **525**, 7 (2013).
 N. Severijns, O. Naviliat-Cuncic, Phys. Scripta **T152** (2013).
 R. D. Glover, T. Bastin, J. Opt. Soc. Am. B **32**, 5 (2015).
 G. T. Hickman, J. D. Franson, Opt. Lett. **41** (2016).
 S. Rochester *et al.*, arXiv:1608.08692 (2016).
 B. Fenker *et al.*, New J. Phys. **18**, 7 (2016).

Development of a MOT system for trapping ⁴⁰Ar

Overview of the experimental scheme

High precision measurements demand high counting statistics which demand high-flux atomic beams which demand high system efficiencies

⇒ the setup needs to be **optimized at every stage**.

Characterizing & optimizing the atomic beam

Transverse fluorescence spectroscopy of the atomic beam

⇒ investigating the influence of a standard (i.e., not spectrally broadened) optical molasses:

Ongoing:

setup of the white-light version of the optical molasses [3].

feasibility study of "optically enhanced" production of metastables [4] -in order to mitigate the low efficiency of the source.

Efficient polarization of ³⁵Ar

The ingredients

A 48-level density operator following the Liouville equation

$$\frac{d\hat{\rho}(t)}{dt} = -\frac{i}{\hbar} \left[\hat{H}_A + \hat{H}_I(t), \hat{\rho}(t) \right] \qquad -\frac{1}{2} \left\{ \hat{\Gamma}, \hat{\rho}(t) \right\} + \text{Tr} \left[\hat{\mathcal{F}} \hat{\rho}(t) \right]$$

dissipative part
$$-\frac{1}{2}\left\{\hat{\Gamma}, \hat{\rho}(t)\right\} + \text{Tr}\left[\hat{\mathcal{F}}\hat{\rho}(t)\right]$$

where \hat{H}_A is the atomic Hamiltonian, $\hat{H}_I(t)$ is the interaction Hamiltonian, $\hat{\Gamma}$ is the relaxation matrix, and $\hat{\mathcal{F}}$ is the spontaneous emission operator.

The menu

We aim at **polarizing** an atomic system

- = populating the Zeeman sublevel such that $m_F = \pm F$ (stretched state),
- = minimizing the entropy of the system.

How to increase the degree of polarization \mathcal{P} ?

Coherent processes \Rightarrow reversible \Rightarrow cannot increase \mathcal{P} [5].

Relaxation processes \Rightarrow irreversible \Rightarrow can increase \mathcal{P} .

⇒ Typical method: optical pumping.

We also aim at minimizing both population loss and the number of spontaneous emission events involved in optical pumping

- ⇒ repump laser beam + static magnetic field.
- ⇒ exploration of methods beyond conventional optical pumping [5].

Also under study: coherent population trapping (CPT) effect

⇒ may cause false polarization signal [6].