

Detection of low-energy protons within the neutron β -decay spectrometer aSPECT

<u>R. Maisonobe¹, S. Baeßler², M. Beck³, F. Glück⁴, W. Heil³, G. Konrad^{5,6}, C. Schmidt³, M. Simson¹, T. Soldner¹,</u> R. Virot¹, A. Wunderle³, O. Zimmer¹

¹Institut Laue-Langevin, Grenoble, France ³Institut für Physik, Universität Mainz, Germany ⁵Atominstitut, TU Wien, Austria ⁶Stefan-Meyer-Institute, ÖAW Wien, Austria ²Physics Department, University of Virginia, Charlottesville, USA ⁴IEKP, Universität Karlsruhe, Germany

JGU

The retardation spectrometer [1]:

- Protons emitted from the DV are energy-selected by a variable potential barrier (U_{A}) at the AP electrode.
- Protons with sufficient energy are focused onto the detector and postaccelerated by a potential of -15 kV.

Effect of temperature

The temperature has an impact on the amplification of the signal by the electronics [4]. The position of the proton peak in the pulse-height spectrum changes with time (day/night cycle).

Integration limits are calculated in function of the position of the proton peak in the mean pulse-height spectrum of the closest 50 V measurement. with $b_1 < 1$

Position of proton peak, central pad

Silicon Drift Detector (SDD):

Semi-conductor detector based on the principle of sidewards depletion [2, 3].

Electronic process:

Output signal from the detector 1 is directly amplified by the **preamplifier** 2. Then, the signal is treated by an adapter board, the **shaper 3** : amplification nonlinear for high-energy events to avoid saturation effects [4, 5].

24.31

d1s

3.56 32.85

((((((

REFERENCE

60

Length of events window: 4 µs.

Pulse-shape of events

The pulse-shape depends on the pulse-height. In the proton region, protons and low-energy electrons are detected.

We cannot distinguish by pulse-shape analysis between electron and proton of the same pulse-height.

Pulse-height resolution

In order to attenuate the fluctuations on the signal, the command *Smooth* (from Root) can be applied. This acts as a low-pass filter for high frequencies and also removes short spikes.

Root documentation for Smooth: algorithm "353QH twice"

with $b_2 > 1$

Influence of integration limits

Statistical error increases due to electron background.

Pulse-shape correction allows using lower integration limits because of reduced electronic noise. Influence of the integration limits after pulse-shape and pile-up corrections:

Description of the pulse-shape by a fit function highlighted events with fluctuations :

These events are closely preceded by an event with typically large pulse-height (mainly correlated electrons).

Pile-up correction

The aim is to identify the first pulse in the event window in agreement with the trigger conditions. A method using the 1st derivative of the smooth signal was tested:

Pile-up events

The position of *histMax* is related to the pulse-height of the event:

Events with a *histMax* occurring later in the event window are potential pile-up events.

PosHistMax_Smooth vs. Smooth_Pulseheight, ch2

80 40.06 22.8

Intersections with 0 are localised and the corresponding pulse-height is calculated. Each position is compared with the phenomenological relation between pulse-height and peak position, Pos = f(pulseheight). This gives a Corrected_Pulseheight.

Bibliography

[1] O. Zimmer *et al.*, Nucl. Instr. Meth. A 440, 548, 2000 [2] P. Lechner *et al.*, Nucl. Instr. Meth. A 377, 346, 1996 [3] M. Simson *et al.*, Nucl. Instr. Meth. A 581, 772, 2007 [4] M. Simson, PhD thesis, Technische Universität München, 2010 [5] R. Maisonobe, PhD thesis, Université de Grenoble, 2014

Conclusion

- Systematic effects on the events detection with *a*SPECT were investigated:
- Compensation of temperature effects results in correction on the coefficient a_{blind} of 0.12%,
- > The *Smooth* approach reduces the noise level and improves the pulse-height resolution,
- > Pile-up events can be corrected using the 1st derivative of their signal and the phenomenological relation between pulse-height and peak position.

The related systematic effects on the coefficient a_{blind} are small and can be corrected:

4 ⇔ Temp.

 $5 \Leftrightarrow$ Smooth + Temp.

6 ⇔ Smooth + Pile-up + Temp.

Lege	nd:
1 🗇	Uncorrected
2 🗇	Smooth
3 ⇔	Smooth + Pile-up