Entering the Precision Era: Antihydrogen Symmetry Tests with ALPHA

Physics of Fundamental Symmetries and Interaction PSI 2016

Makoto C. Fujiwara

> Head, Particle Physics Department TRIUMF - Canada's National Lab. for Particle \& Nuclear Physics

Outline

- Big questions
- MCF: arXiv:1309.7468
- Brief overview
- First precision results with anti-H
- Implications of recent charge neutrality tests
- Status and Prospects

"Big Questions"

What is Particle Physics?

(e.g. Grossman)

"Simple Answer"

The Standard Model! is (technically) unnatural ..

- Fine tuning of Higgs mass
- Should be new physics at TeV scale, e.g SUSY

Are we asking right question?

" $L=$?" really right question to ask?

Is Quantum Field Theory correct description of Nature?

Motivations: Symmetries

Quantum Field Theory
 CPT
 Symmetry
 H \& anti-H Spectra

- CPT: Fundamental property of QFT
- Theorem: atomic spectra of H \& anti-H identical

General Relativity
 Equival. Principle
 H \& anti-H
 Free fall

- Einstein's Equivalence Principle
- Matter and Antimatter fall in same way

Any violation would force radical change in theory!

ALPHA Experiment

ALPHA brief history

- ATHENA: produced first cold Hbars (2002) (They were not trapped)
Completed data taking in 2004
- Developed into new experiments (2005)
- Trapping and Spectroscopy of Hbars

Antihydrogen Laser Physics Apparatus
Also Microwaves, Gravity, Charge...

ALPHA Collaboration

RIKEN: Y. Yamazaki
Federal University of Rio de Janeiro: C.L. Cesar, D. Miranda
University of Tokyo: R. Funakoshi, R.S. Hayano
University of Wales, Swansea: E. Butler, M. Charlton, A. Humphries, N. Madsen, L. V. Jørgensen, M. Jenkins, D.P. van der Werf

Auburn University: F. Robicheaux
University of California, Berkeley: W. Bertsche, S. Chapman, J. Fajans, A. Povilus, J. Wurtele Nuclear Research Centre, Negev, Israel: E. Sarid

University of Liverpool: P. Nolan, P. Pusa
University of British Columbia: A. Gutierrez, Seif El Nasr.M. Michan, T. Momose, W.N. Hardy* University of Calgary: Rydomako. ()Friesen, R.I. Thompson*

Université de Montréal: J.-P. Martin*

Simon Fraser University: Dehghani. M. Hayden*

Canadian students
Postdocs

TRIUMF: P. Amaudruz*, M. Barnes, M.C. Fujiwara*, D.R. Gill*,

[^0] Great team effort!

Some ALPHA-1 Achievements

A side project

Anti-H Charge Neutrality Tests

(Nature Comm. 2014, Nature 2016)

Experimental Limits on $|\delta q / q|$

BTRIUMF

2014: Anti-H Charge Neutrality Test

Biasing E field
Key: position sensitive detection

Trapped Anti-H energy $\mu \Delta \mathrm{B} \sim 50 \mu \mathrm{~V}$ << applied potential ~100 V

2014 (ALPHA-1): Q<1.3×10-8 via DC fields
2016 (ALPHA-2): Q<0.7×10-9 via random pulses
ALPHA's first precision results! (from side project)

Improved Limit on $|\delta Q / Q|$

PDG 2014

$$
\left|a_{e^{+}}+q_{e^{-}}\right| / e
$$

A test of CPT invariance. See also similar tests involving th

Positronium

SF6 gas 10^{-21}

BASE

 (cycl freq:

VALUF
$<4 \times 10^{-8}$
DOCUMENT ID
7 HUGHES 92 RVUE

- - Vve do not use the following data for averages, fits, limits, etc.

$<2 \times 10^{-18}$	8 SCHAEFER	95	THEO V
$<1 \times 10^{-18}$	9 MUELLER	92	THEO

7 HUGHES 92 uses recent measurements of Rydberg-energy and tios.
8 SCHAEFER 95 removes model dependency of MUELLER 92.
9 MUELLER 92 argues that an inequality of the charge magnitudes order vacuum polarization, contribute to the net charge of atoms

Anti-H neutrality tests: 2014 (ALPHA-1): Q<~10-8 2016 (ALPHA-2): Q<0.7×10-9 New e+ charge limit $\sim 10^{-9}$ (40 fold improv't over PDG)

What about e+ mass?

$$
\left(m_{e^{+}}-m_{e^{-}}\right) / m_{\text {average }}
$$

PDG 2014

$<8 \times 10^{-9} \quad$ A test of CPT invariance.

VALUF	$<8 \times \mathbf{1 0}^{-9}$	$\frac{C L \%}{90}$	$6 \frac{\text { DOCUMENT ID }}{\text { FEE }}$	
$\frac{\text { TECN }}{\text { CNTR }}$	$\frac{\text { COMMENT }}{\text { Positronium spectroscopy }}$			

$<4 \times 10^{-23}$	90	7 DOLGOV	14	
$<4 \times 10^{-8}$	90	CHU	84	CNTR

6 FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one.
7 DOLGOV 14 result is obtained under the assumption that any mass difference between electron and positron would lead to a non-zero photon mass. The PDG 12 limit of $1 \times 10^{-18} \mathrm{eV}$ on the photon mass is in turn used to derive the value quoted here.

I have issues with PDG and Fee, Chu et al.!

1. PDG "assumption that the Ps Rydberg is exactly half of the hydrogen one" does not make sense
2. It seems FEE93 assumed incorrect sensitivity between Δ freq(1s-2s) and $\Delta m_{e+} / m_{e}$
3. e+ mass \& charge should be treated independently (as for Pbars)
4. Not clear if the limit is 90% CL rather than 1σ

BTRIUMF

Positron charge \& mass before ALPHA

(MCF at LEAP 2016)

Before ALPHA
$-\Delta \mathrm{m}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}+} \sim 10^{-7}$
$-\Delta Q_{e^{+}} / Q_{e^{+}} \sim 3 \times 10^{-8}$
(Pbar mass, charge anomaly negligible)

Cf: PDG 2014
$-\Delta \mathrm{m}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}+}: 8 \times 10^{-9}$
($\times 10$ overestimate of precision!)
$-\Delta Q_{e^{+}} / Q_{e^{+}}: 4 \times 10^{-8}$

Qtriumf

Positron Charge \& Mass after ALPHA-1

- After ALPHA-1 [3]
- Both $\Delta \mathrm{m}_{\mathrm{e}^{+}} / \mathrm{m}_{\mathrm{e}^{+}}$and $\Delta Q_{e_{+}} / Q_{e_{+}}$improved marginally $\sim x 2$

QTRIUMF

Positron Charge \& Mass after ALPHA-2

- After ALPHA-2 [4]
- Ignore pbar charge \& mass anomaly (4×10^{-10})
$-\Delta Q_{e^{+}} / Q_{e^{+}} \sim 7 \times 10^{-10}(1 \sigma)$, 40-fold improvement over pre-ALPHA
- $\Delta \mathrm{m}_{\mathrm{e}+} / \mathrm{m}_{\mathrm{e}^{+}} \sim \pm 2 \times 10^{-8}$, ~ 5 fold improvement
- But central value shifted due to disagreement between theory and exp in Ps(1s-2s)

Btriumf

Antiproton Mass \& Charge

- Analysis so far assumed:

$$
\delta m_{\mathrm{pbar}} / \mathrm{m}_{\mathrm{pbar}}, \delta \mathrm{Q}_{\mathrm{pbar}} / \mathrm{Q}_{\mathrm{pbar}} \ll \delta \mathrm{~m}_{\mathrm{e}^{+}} / \mathrm{m}_{\mathrm{e}^{+}}, \delta \mathrm{Q}_{\mathrm{e}^{+}} / \mathrm{Q}_{\mathrm{e}^{+}}
$$

- Next generation Anti-H exp'ts can no longer assume this.
- In general, need 4 independent measurements to determine $\mathrm{m}_{\mathrm{pbar}}, \mathrm{Q}_{\mathrm{pbar}}, \mathrm{m}_{\mathrm{e}+}, \mathrm{Q}_{\mathrm{e}+}$. Possibilities:

Measurement	Leading order dependence	Current precision (1σ)	Near future prospects
Pbar/p cyclotron	$\mathrm{Q}_{\mathrm{pbar}} / \mathrm{m}_{\mathrm{pbar}}$	7×10^{-11}	Base: $10^{-11} ?$
Pbar He	$\mathrm{m}_{\mathrm{pbar}} \mathrm{Q}_{\mathrm{pbar}}{ }^{2}$	4×10^{-10}	ASACUSA: $10^{-10} ?$
$\mathrm{e}+/ \mathrm{e}-$ cyclotron	$\mathrm{Q}_{\mathrm{e}^{+}} / \mathrm{m}_{\mathrm{e}^{+}}$	1.3×10^{-7}	Harvard?
$\mathrm{Ps}(1 \mathrm{~s}-2 \mathrm{~s})$	$\left(\mathrm{m}_{\mathrm{e}^{+}} / 2\right) \mathrm{Q}_{\mathrm{e}^{+}}{ }^{2}$	5×10^{-9}	ETH: $5 \times 10^{-10} ?$
Anti-H $($ charge $)$	$\mathrm{Q}_{\mathrm{pbar}}+\mathrm{Q}_{\mathrm{e}^{+}}$	7×10^{-10}	ALPHA: $10^{-12} ?$
Anti-H $(1 \mathrm{~s}-2 \mathrm{~s})$	$\mathrm{m}_{\mathrm{e}^{+}} \mathrm{Q}_{\mathrm{pbar}}{ }^{2} \mathrm{Q}_{\mathrm{e}^{+}}{ }^{2}$	-	ALPHA: $10^{-11} ?$

Anti-H studies entering precision era!

Spectroscopy with ALPHA-2

\&triumf

ALPHA-2: Precision Spectroscopy Machine

Laser access; Improved microwaves, 5 mirror coils Getting ready for first laser spectroscopy in 2016

© ${ }^{2}$ RIUMF

Anti-H long term goal: Precision spectroscopy

1s-2s two-photon spectroscopy

"Initial" anti-H precision $\sim 10^{-11}$
(Implications for proton radius puzzle)
"Initial" anti-H precision $\sim 10^{-11}$
(Implications for proton radius puzzle)

Btriumf

Anti-H Laser Cooling

- Laser cooling
- Provides cold, dense, spatially confined sample
- Needed for high precision \& gravity experiments
- 122 nm (Lyman-alpha) laser challenging!

- Realistic proposal
[Donnan, MCF, Robicheaux, J. Phys. B. 46, 205302 (2013)]
- Pulsed laser cooling
- Cooling on 1 dimension
- Use coupling of deg. of freedom for 3-D cooling
- Cooling from $\sim 500 \mathrm{mK}$ to ~20 mK in few 100 s
- Laser built at UBC

First laser exp't attempts
Fall 2016

ALPHA-g

Antimatter Gravity Measurement

- Gravity

- Never measured with antimatter

- Very difficult experiment since gravity is so weak
- Now plausible due to long confinement time

> nature
> physics

Confinement of antihydrogen for 1,000 seconds

The ALPHA Collaboration ${ }^{\star}$

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms . A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for $1,000 \mathrm{~s}$, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.

BTRIUMF

Antimatter Gravity Experiment

- Does antimatter fall down?
- Many indirect constraints incl. EP tests
- Experimental question! (e.g. Lykken et al, arXiv:0808.3929)
- Anti-H "gas" will sag due to gravity
- Need anti-H cooling to ~mK

$$
\begin{aligned}
& 1 / 2 k T=m g h \\
& \text { Vertical trap: } h \sim 1 m
\end{aligned}
$$

- Position sensitive detection via annihilations
- Laser cooling essential step: development at UBC |

- A long (~ 2m) vertical trap
- Anti-H production region

Production, trapping, \& cooling

- Sagging of anti-H "gas"
- Anti-atomic "fountain"
- Anti-atomic interferometry
- uW spectroscopy
- Major Canadian funding (thank you, referees!)

- Measurement region

Experimental Concept

pbar

\&triumf

ALPHA-g in AD zone

Aiming for commissioning in 2017!

Rtriumf

Radial TPC Construction at TRIUMF

GEANT simulation

2.3 m long, Radial thickness: 8 cm Unusual magnetic fields
\rightarrow Radial-drift TPC

\&triumf

Radial TPC Prototype, Cosmic Test

Reconstructed Cosmic Rays (no B field)

®triumf

Future?

Future: Anti-atomic fountain \& interforometry

Summary

- We hope to address some of most fundamental questions in physics with Anti-H
- After many years of efforts, anti-H studies finally entering precision era!
- Improving the knowledge of positron charge and mass
- First laser, and improved microwave spectroscopy
- Many exciting opportunities to come!
- Anti-H gravity
- Fountain, Interferometer, etc.

Thank you! Merci!

[^0]: L. Kurchaninov*, K. Olchanski*, A. Olin*,S.Stracka J.Storey + Professional Support** York University S. Amole. Capra, D. Malik, S. Menary*

 * Active faculty/staff in present phase
 **P. Bennett, D. Bishop, R. Bula, S. Chan, B. Evans, D. Healey, T. Howland, H. Hui, K. Langton, C. Marshall, J. Nelson, D. Rowbotham, P. Vincent, T. Meyer, M. Pavan ++ Undergrads: W. Lai, L. Wasilenko, C. Kolbeck, N. Evetts

