NLO prediction for $\mu \to e \gamma \nu \bar{\nu}$ and $\mu \to e(e^+e^-)\nu \bar{\nu}$ decays in the SM

Matteo Fael

Universität Bern

PSI 2016, October 19th, 2016

1506.03416, 1602.00457

work in collaboration with: C. Greub, L. Mercolli, M. Passera. See also the poster by Y. Ulrich, A. Signer, M. Pruna Radiative decay

 $\mu
ightarrow e
u ar{
u} \gamma$

Rare decay

$$\mu
ightarrow e
u ar{
u} (e^+ e^-)$$

- Very clean, can be predicted with very high precision.
- ▶ TH formulation in terms of Michel parameters allow to test couplings beyond the SM *V*-*A*; additional Michel param. accessible in RMD.
- Precise data on τ radiative decays may allow to determine its g-2. Eidelman, Epifanov, MF, Mercolli, Passera, JHEP 1603 (2016) 140

Radiative decay

 $\mu
ightarrow e
u ar{
u} \gamma$

$$\mu
ightarrow e
u ar{
u} (e^+ e^-)$$

- Very clean, can be predicted with very high precision.
- ▶ TH formulation in terms of Michel parameters allow to test couplings beyond the SM *V*-*A*; additional Michel param. accessible in RMD.
- Precise data on τ radiative decays may allow to determine its g-2. Eidelman, Epifanov, MF, Mercolli, Passera, JHEP 1603 (2016) 140
- SM background for μ and τ flavour violating decays: $\mu \to e\gamma, \mu \to eee$.

Time-correlated background: MEG

- Energy and $t_{e\gamma}$ calibration.
- Normalization:

$$N_{\mu} = rac{N^{e
u ar{
u} \gamma}}{\mathcal{B}^{e
u ar{
u} \gamma}} imes arepsilon_{ ext{exp}}$$

 $\mathcal{B}^{exp}(\mu^+ \to e^+ \nu \bar{\nu} \gamma, \omega_0 \ge 40 \text{ MeV}, E_e \ge 45 \text{ MeV}) = 6.03 (14)_{st} (53)_{sys} \times 10^{-8}$ MEG collaboration, EPJ C 76 (2016) 108

Time-correlated background: Mu3e

Background:

- Accidental combination two positron and an electron,
- Rare decay: $\mu^+ \rightarrow e^+ e^- e^+ \nu \bar{\nu}.$
- Background suppression with $m_{\mu} E_{\rm vis} \leq E_{\rm max}$

Mu3e collaboration, EPJ Web Conf. 118 (2016) 01028.

B.R. of radiative $ au$ leptonic decays $(E_{\gamma}^{\min}=$ 10 MeV)			
	$ au o e ar{ u} u \gamma$	$ au o \mu ar u u \gamma$	
$\mathcal{B}_{\scriptscriptstyle \mathrm{EXP}}$	$1.847(15)_{ m st}(52)_{ m sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$	

BABAR coll., PRD 91 (2015) 051103

- Babar experimental precision around 3%.
- More precise than CLEO results: T. Bergfeld et al., PRL 84 (2000) 830 $1.75 \ (6)_{st} (17)_{sy} \times 10^{-2} \ (\tau \to e \gamma \nu \bar{\nu}),$ $3.61 \ (16)_{st} (35)_{sy} \times 10^{-3} \ (\tau \to \mu \gamma \nu \bar{\nu}).$

VOLUME 113, NUMBER 6

Radiative Corrections to Fermi Interactions*

TOICHIRO KINOSHITA, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

AND

ALBERTO SIRLIN, Physics Department, Columbia University, New York, New York (Received October 23, 1958)

VOLUME 113, NUMBER 6

Radiative Corrections to Fermi Interactions*

TOICHIRO KINOSHITA, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

AND

ALBERTO SIRLIN, Physics Department, Columbia University, New York, New York (Received October 23, 1958)

T. van Ritbergen, R. Stuart, PRL 82 (1999) 488

2-loop QED contributions to the muon lifetime in the Fermi model:

Why NLO?

Decay rates at LO:

- μ → eγνν Kinoshita, Sirlin, PRL 2 (1959) 177; Fronsdal, Uberall, PR 133 (1959) 654; Eckstein, Pratt, Ann. Phys. 8 (1959) 297; Kuno, Okada, RMP 73 (2001) 151; (one-loop) Fischer et al., PRD 49 (1994) 3426; Arbuzov, Scherbakova, PLB 597 (2004) 285.
- $\mu \rightarrow e(e^+e^-)\nu\bar{\nu}$ Bardin, Istatkov, Mitselmakher, Yad. Fiz. 15 (1972) 284; Fishbane & Gaemers, PRD. 33 (1986) 159; van Ritbergen & Stuart, NPB 564 (2000) 343; Djilkibaev & Konoplich, PRD 79 (1009) 073004.
- $\land \alpha/\pi \sim 0.002$
- ▶ NLO enhancement (up to a relative O(10%) correction) due to
 - collinear photons: $\alpha \ln m_e/Q$.
 - soft photons: $\alpha \ln \omega_0 / Q$.
- Babar's BRs must be compared with SM branching ratio at NLO $(\alpha/\pi) \ln(m_l/m_\tau) \ln(\omega_0/m_\tau)$, ~ 10% for l = e, ~ 3% for $l = \mu$.
- For per-cent accuracy, leading-log resummation or even O(α²) correction are relevant.
- Reduce error on the TH prediction:
 - Unknown higher order corrections,
 - μ_R dependence in $\overline{\mathrm{MS}}$,
 - α or $\alpha(q^2)$?

Technical Ingredients

$$\Gamma_{
m NLO} = \int \! d\Phi_n \Big[|\mathcal{M}_{
m LO}|^2 \! + \! 2\, {
m Re}(\mathcal{M}_{
m virt}\mathcal{M}_{
m LO}^*) \Big] \! + \! \int \! d\Phi_{n+1} |\mathcal{M}_{
m real}|^2$$

- > NLO correction computed with Fermi Lagrangian.
- > Virtual corrections are finite after e and m renormalization.
- finite terms $\propto m_e$ cannot be neglected:

$d\Gamma$	$(m_{l}/E_{l})^{2}$	T. D. Lee, M. Nauenberg, PR 133 (1964) B1549
$\overline{d heta_{l\gamma}} \sim$	$\overline{((m_l/E_l)^2+ heta_{l\gamma}^2)^2}$	L. M. Sehgal, PLB 569 (2003) 25 V. S. Schulz, L. M. Sehgal, PLB 594 (2004) 153

Virual Corrections

Collier, Denner et al. hep-ph/1604.06792

- Processes with additional soft photon emission are experimentally undistinguishable.
- Logarithmic IR singularity when photon energy $k_0 \rightarrow 0$.

$$\Gamma_{
m real} = \int d\Phi_{n+1} |{\cal M}_{
m real}|^2$$

- Processes with additional soft photon emission are experimentally undistinguishable.
- Logarithmic IR singularity when photon energy $k_0 \rightarrow 0$.

$$\Gamma_{\mathrm{real}} = \int d\Phi_n \int_0^{\omega_0'} d^3k_\gamma |\mathcal{M}_{\mathrm{real}}|^2 + \int_{k_0 > \omega_0'} d\Phi_{n+1} |\mathcal{M}_{\mathrm{real}}|^2$$

First photon PS integral can be solved analytically (with finite photon mass λ) in the soft photon approximation: $|\mathcal{M}_{\text{real}}|^2 = f(k_{\gamma})|\mathcal{M}_{\text{LO}}|^2$

- Processes with additional soft photon emission are experimentally undistinguishable.
- Logarithmic IR singularity when photon energy $k_0 \rightarrow 0$.

$$\Gamma_{
m real} = \int d\Phi_n F_{
m soft}(\omega_0',\lambda) |\mathcal{M}_{
m LO}|^2 + \int_{\omega > \omega_0'} d\Phi_{n+1} |\mathcal{M}_{
m real}|^2$$

- First photon PS integral can be solved analytically (with finite photon mass λ) in the soft photon approximation: $|\mathcal{M}_{\text{real}}|^2 = f(k_{\gamma})|\mathcal{M}_{\text{LO}}|^2$
- F_{soft} |M_{LO}|² + 2Re(M_{virt}M_{LO}) is free of IR-divergences (ln λ) but it is not adequate for real experiments since they do not provide a sufficiently small ω'₀ (ω'₀ ≪ m_μ).
- Also other methods on the market: dipoles, FKS, antenna.

RMD branching ratio is defined for a minimum photon energy E_{γ}^{\min} .

Double bremsstrahlung: two photons in the final state. We distinguish "Inclusive" and "Exclusive" BRs:

$$\mathcal{B}^{\mathrm{Exc}}(E_{\gamma}^{\mathrm{min}}) = \blacksquare,$$
$$\mathcal{B}^{\mathrm{Inc}}(E_{\gamma}^{\mathrm{min}}) = \blacksquare + \blacksquare.$$

NLO Branching Ratios

Results: BRs

	$\mu ightarrow e u ar{ u} \gamma [E_{\gamma}^{ m min} = 10{ m MeV}]$	$\mu ightarrow e u ar{ u} \gamma [ext{MEG}]$	$\mu ightarrow e(e^+e^-) u ar{ u}$
\mathcal{B}_{LO}	1.308×10^{-2}	$6.204 imes 10^{-8}$	3.6054×10^{-5}
$\mathcal{B}_{\mathrm{NLO}}^{\mathrm{Inc}}$	$1.289(1)_{ m th} imes 10^{-2}$	$5.84(2)_{th} imes 10^{-8}$	$3.5987(8)_{ t th} imes 10^{-5}$
$\mathcal{B}_{\rm NLO}^{\rm Exc}$	$1.286(1)_{ m th} imes 10^{-2}$	—	—
K (Inc)	0.985	0.94	0.998
K (Exc)	0.983	_	_
\mathcal{B}_{EXP}	† 1.4 (4) × 10 ⁻²	$^{*}6.03(14)_{ m st}(53)_{ m sys} imes 10^{-8}$	$^{\ddagger}3.4(4) imes 10^{-5}$

```
$SINDRUM - NPB 260 (1985) 1
```

[†]Crittenden et al - PR 121 (1961) 1823 ^{*}MEG - EPJC 76 (2016) 108 $E_e > 45$ MeV & $E_{\gamma} > 40$ MeV

 (τ) : experimental error of lifetimes.

K-factor: $K = \mathcal{B}^{NLO} / \mathcal{B}^{LO}$.

(th): assigned th. error:

- RMD: $(\alpha/\pi) \ln(m_e/m_\mu) \ln(E_{\gamma}^{\min}/m_\mu)$,
- Rare: μ_R variation.

Results: $R\tau D$

	$ au o e ar{ u} u \gamma$	$ au o \mu ar u u \gamma$
\mathcal{B}_{LO}	1.834×10^{-2}	3.663×10^{-3}
${\cal B}_{ m \scriptscriptstyle NLO}^{ m Inc}$	$1.728(10)_{ m th}(3)_ au imes 10^{-2}$	$3.605(2)_{ m th}(6)_ au imes 10^{-3}$
${\cal B}_{_{ m NLO}}^{ m Exc}$	$1.645(19)_{ m th}(3)_{ au} imes 10^{-2}$	$3.572(3)_{ m th}(6)_ au imes 10^{-3}$
K (Inc)	0.94	0.98
K (Exc)	0.90	0.97
\mathcal{B}_{exp}	$^{\dagger}1.847(15)_{ m st}(52)_{ m sy} imes10^{-2}$	$^{\dagger}3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$

†_{BABAR} - prd 91 (2015) 051103

Comparison with Babar exclusive measurements:

	$ au o e ar u u \gamma$	$ au o \mu ar u u \gamma$
Δ^{Exc}	$2.02(57) imes10^{-3} ightarrow 3.5\sigma$	$1.2(1.0) imes10^{-4} ightarrow 1.1\sigma$

Results: BRs dependence on $\not\!\!\!E_{\max}$

- Additional photon radiation is assumed to be "invisible".

 m_{123} : invariant mass of the three electrons.

- We studied the differential rates and BRs of radiative decay $\mu \to e \gamma \nu \bar{\nu}$ and the rare decay $\mu \to e(e^+e^-)\nu \bar{\nu}$ in the SM at NLO in α .
- QED RC were computed taking into account full mass dependence m_e/m_μ , needed for the correct determination of the BRs.
- ▶ $2\text{Re}(\mathcal{M}_{\text{virt}}\mathcal{M}_{\text{LO}}^{\star})$ and $|\mathcal{M}_{\text{real}}|^2$ are available as Fortran code.
- ▶ BRS: our predictions agree with the experimental value for $\mathcal{B}(\mu \to e \gamma \nu \bar{\nu})$, $\mathcal{B}(\mu \to e e e \nu \bar{\nu})$ and Babar's measurement of $\mathcal{B}(\tau \to \mu \gamma \nu \bar{\nu})$.
- On the contrary, Babar's precise measurement of $\mathcal{B}(\tau \to e \gamma \nu \bar{\nu})$ differs from our prediction by 3.5 σ .
- Search of CLFV: QED RC in the PS region where $m_{\mu} E_{\text{vis}} \rightarrow 0$ can yield a O(10%) (negative) contribution to the width.

Backup slides

₿ _{max}	${\cal B}_{ m LO}$	$\delta {\cal B}_{ m NLO}$	$\mathcal{B}_{\rm NLO}$	Κ
no cut	$3.6054(1)_n imes 10^{-5}$	$-6.69(5)_n imes 10^{-8}$	$3.5987(1)_n(8)_{ ext{th}} imes 10^{-5}$	0.998
$1 m_e$	$2.8979(6)_n imes 10^{-19}$	$-6.56(2)_n imes 10^{-20}$	$2.242(2)_n(17)_{ ext{th}} imes 10^{-19}$	0.77
$5 m_e$	$4.641(1)_n imes 10^{-15}$	$-7.41(3)_n imes 10^{-16}$	$3.900(3)_n(20)_{ m th} imes 10^{-15}$	0.83
$10 \ m_e$	$3.0704(7)_n \times 10^{-13}$	$-4.04(2)_n \times 10^{-14}$	$2.666(2)_n(11)_{\rm th} \times 10^{-13}$	0.87
$20 \ m_e$	$2.1186(5)_n \times 10^{-11}$	$-2.17(1)_n \times 10^{-12}$	$1.902(1)_n(6)_{\rm th} \times 10^{-11}$	0.90
$50 m_e$	$7.151(1)_n \times 10^{-9}$	$-4.55(3)_n \times 10^{-10}$	$6.696(3)_n(13)_{ m th} imes 10^{-9}$	0.93
$100 \ m_e$	$2.1214(4)_n imes 10^{-6}$	$-9.47(6)_n imes 10^{-8}$	$2.027(1)_n(3)_{ m th} imes 10^{-6}$	0.96

 $\mathcal{B}(E_{\max})$

The total differential decay for a polarized μ or τ lepton in the tau r.f. is

$$egin{aligned} &rac{d^6\Gamma^{ ext{NLO}}}{dx\,dy\,d\Omega_l\,d\Omega_\gamma} = rac{lpha\,G_F^2m_ au^5}{(4\pi)^6}rac{xeta}{1+\delta_{ ext{w}}(m_\mu,m_e)}\Bigg[G(x,y,c)\ &+xeta\,\hat{n}\cdot\hat{p}_l\,J(x,y,c)+y\,\hat{n}\cdot\hat{p}_\gamma\,K(x,y,c)+y\,xeta\,\hat{n}\cdot(\hat{p}_l imes\hat{p}_\gamma)\,\,L(x,y,c)\Bigg] \end{aligned}$$

where $x = 2E_l/m_{\tau}$, $y = 2E_{\gamma}/m_{\tau}$, $c = \cos \theta_{l\gamma}$. The polarization vector $n = (0, \vec{n})$ satisfies $n^2 = -1$ and $n \cdot p_{\tau} = 0$. The function G(x, y, c), and similarly for J and K, is given by

$$G(x,y,c) = rac{4}{3yz^2}\left[g_{ ext{\tiny LO}}(x,y,z) + rac{lpha}{\pi}\,g_{ ext{\tiny NLO}}(x,y,z;y_{ ext{\tiny min}}) + \left(rac{m_ au}{M_W}
ight)^2\,g_{ ext{\tiny W}}(x,y,z)
ight]$$

The total differential decay for a polarized μ or τ lepton in the tau r.f. is

$$rac{d^6 \Gamma^{_{
m NLO}}}{dx \ dy \ d\Omega_l \ d\Omega_\gamma} = rac{lpha \ G_F^2 m_ au^5}{(4\pi)^6} rac{xeta}{1+\delta_{_{
m W}}(m_\mu,m_e)} \Bigg[G(x,y,c) \ .$$

 $+ \; xeta \, \hat{n} \cdot \hat{p}_l \, J(x,y,c) + y \, \hat{n} \cdot \hat{p}_\gamma \, K(x,y,c) + y \, xeta \, \hat{n} \cdot (\hat{p}_l imes \hat{p}_\gamma) \; L(x,y,c)$

where $x = 2E_l/m_{\tau}$, $y = 2E_{\gamma}/m_{\tau}$, $c = \cos \theta_{l\gamma}$. The polarization vector $n = (0, \vec{n})$ satisfies $n^2 = -1$ and $n \cdot p_{\tau} = 0$. The function G(x, y, c), and similarly for J and K, is given by

$$G(x,y,c) = rac{4}{3yz^2}\left[g_{ ext{\tiny LO}}(x,y,z) + rac{lpha}{\pi}\,g_{ ext{\tiny NLO}}(x,y,z;y_{ ext{\tiny min}}) + \left(rac{m_ au}{M_W}
ight)^2\,g_{ ext{\tiny W}}(x,y,z)
ight]$$

Compared with previous work A. B. Arbuzov PLB 597 (2004) 285