Towards a Measurement of Weak Magnetism in ⁶He Decay

Xueying Huyan (huyan@nscl.msu.edu)

National Superconducting Cyclotron Laboratory/Michigan State University

Collaborators: D. Bazin¹, A. Gade¹, M. Hughes¹, S. Liddik¹, K. Minamisono¹, O. Naviliat-Cuncic¹, S. Noji¹, S. Paulauskas¹, A. Simon¹, P. Voytas², D. Weisshaar¹ ¹NSCL/Michigan State University MI, USA, ² Wittenberg University OH, USA

I. Motivation

This experiment focuses on a precision measurement of the β energy spectrum in ⁶He decay to search for tensor type contributions to the weak interactions.

2. Experiment

Implant a ⁶He beam into a CsI(Na) or a Na(I) scintillating detector. The detector fully encloses the radioactive source so that no β particles can escape.

 $S(W) = (1 + C_0 + C_1 W + C_{-1} / W)$

Related to weak magnetism form factor Dominant term C₁ ~0.65%/MeV

3. Measured β Spectra

No traces of "short lived" beam

- Define 6-7 slices between 3 and 6 s, with about 10⁶ events in each spectrum.
- We collected typically 10^7 events in 1 h run.

4. Theoretical Corrections and Geant4 Simulations

- β particles lose energy in the detector by collision and radiation.
- Some Bremsstrahlung radiation escapes the detector and produces a distortion in the spectrum shape.

induced background

5. Fit Procedure

Theoretical Corrections are dominated by Fermi function and radiative corrections.

Monte Carlo

• There is no correlation between the actual value of the system gain and $C_{1.}$ There is an anti-correlation between the systematic error of the system gain and C_1 .

Fitted C₁ (/keV)

Relative statistical uncertainty of the gain is 6×10^{-4} for a single spectrum with 10^{6} events.

7. Systematic effect: pile-up

8. Status and Outlook

weak magnetism form factor

Energy (Channel)

Data analysis to extract weak magnetism is in progress. Collected statistics will enable to extract weak magnetism at $\sim 5\%$ relative statistical uncertainty.

Weak magnetism should manifest on the way down to a precision measurement of the Fierz term.

This provides a benchmark test to any experimental technique aiming to reach new levels of sensitivity.

Acknowledgement

Work supported by the National Science Foundation (US) under grant number PHY-11-02511.