<u>A New Search for Neutron-</u> <u>Anti-Neutron Oscillations</u>

Neutron-Anti-Neutron Oscillations at ESS

12-13 June 2014, CERN, Geneva, Switzerland

Neutral particle oscillations have proven to be extremely valuable probes of fundamental physics. Kaon oscillations provided us with our first insight into CP-violation, fast Bs oscillations provided the first indication that the top quark is extremely heavy. B oscillations form the most fertile ground for the continued study of CP-violation and neutrino oscillations suggest the existence of a new, important energy scale well below the GUT scale. Neutrons oscillating into antineutrons could offer a unique probe of baryon number violation

The construction of the European Spallation Source in Lund, with first beam expected in 2019, together with modern neutron optical techniques, offers an opportunity to conduct an experiment with at least three orders of magnitude improvement in sensitivity to the neutron oscillation probability.

At this workshop the physics case for such an experiment will be discussed, together with the main experimental challenges and possible solutions. We hope the workshop will conclude with the first steps towards the formation of a collaboration to build and perform the experiment. Organising committee: G. Brodymans (Columbia University) S. Chattopaethyay (Cockroft Institute) R. Hall-Witten European Spallation Source) R. Kilnikky (Technical University of Tennassee) B. Kilnikky (Technical University of Tennassee) M. Lindrous (European Spallation Source and Lund University) M. Lindrous (European Spallation Source and Lund University) M. Magelii (CERR) M. Mezzetto (INFR) Padoxa)

H. M. Shimizu (Nagoya University) W. M. Snow (Indiana University) T. Soldner (Institut Laue Langevin) C. Theroine (European Spallation)

Register before 19 May on www.nnbar-at-ess.org A. R. Young NCSU Thanks to G. Brooijmans for slides

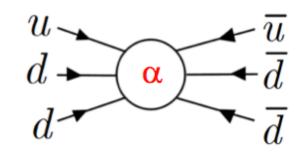
> PSI 2016 PSI, October 17, 2016

Gustaaf Brooijmans

Neutron-Anti-Neutron Oscillation Search

- Oscillations in Neutral Systems and B Violation
- Current Limits
- European Spallation Source
- Beamline & Detector Concepts
- Collaboration

Central Questions for the Standard Model


Origin of neutrino mass

The cosmological baryon asymmetry

Pattern of charges and masses for the SM Fermions

> Sources of Baryon Number Violation

All potentially connected by physics at or above EW scale

B-L Triangle:

sphaleron

Observable N-N oscillations in a next generation experiment!

For example...

Neutron-Anti-Neutron Oscillation Search

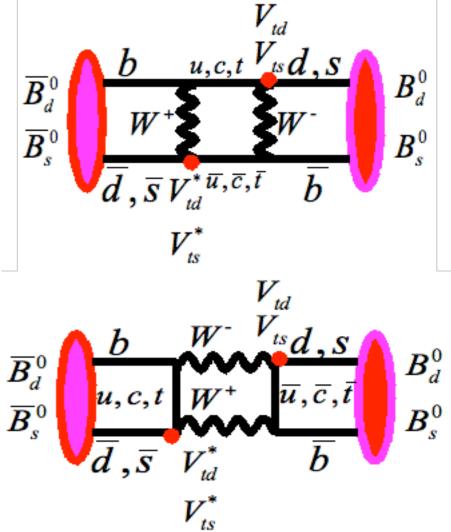
Gaps in the Standard Model

Many cosmological issues

- Dark matter and dark energy
- Not enough CP violation in the quark sector for baryogenesis
- Baryon number violation required for the baryon asym but where does it come from?
 - Present in the SM through B-L (sphalerons)

→ Baryogenesis through leptogenesis and B-L?

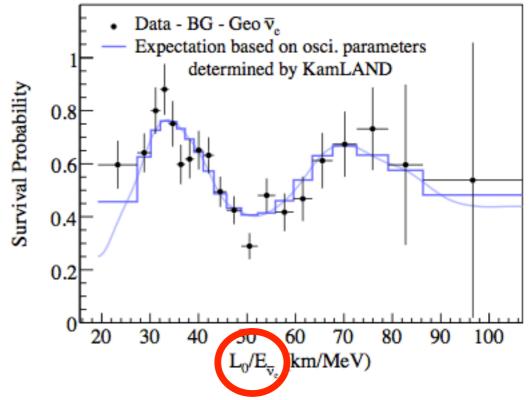
Also find B violation in GUTs $\Delta B=1$: proton decay $\rightarrow \Lambda > 10^{13} \text{ TeV}$


strong exptl limits...

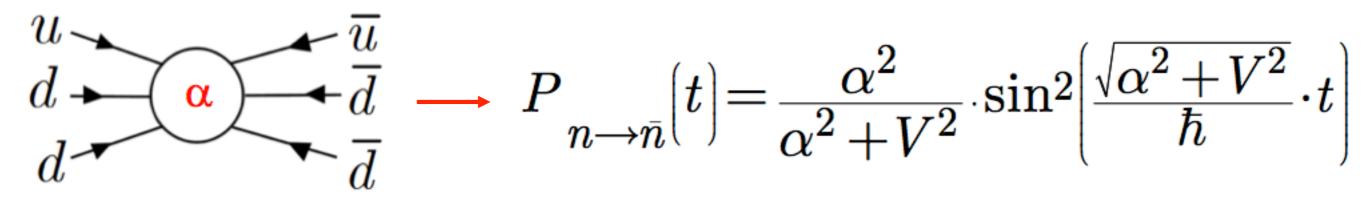
 $\Delta B=2:$ not constrained by p decay (wide range of scales for new physics...)

produces oscillations!

The Power of Oscillations

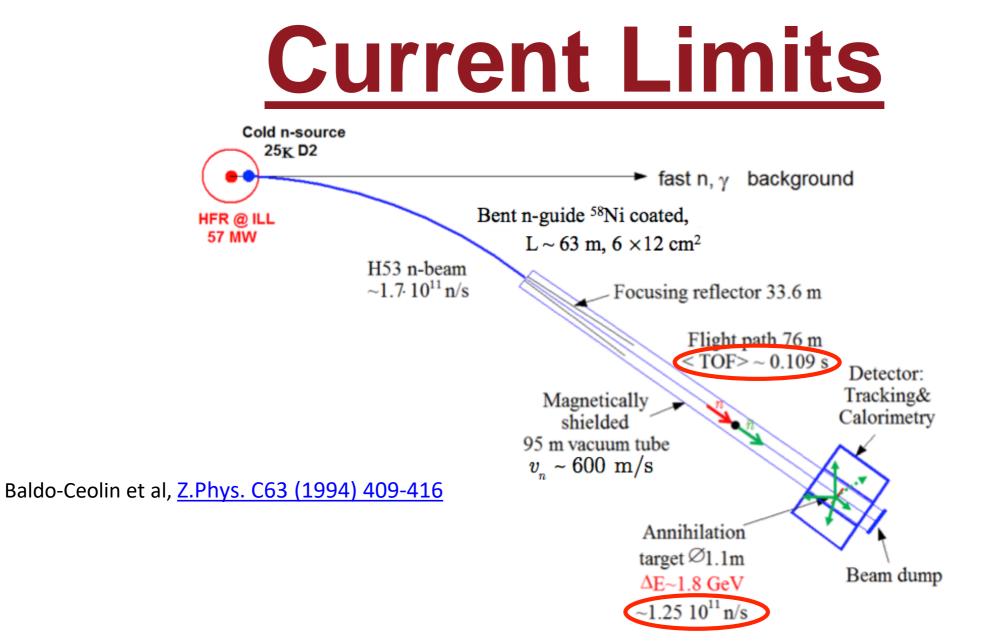

- Neutral particle oscillations have played large role in particle physics
 - K⁰-K⁰ oscillations (ΔS = 2) at the core of our initial understanding of CP-violation
 - B meson oscillations (**ΔBeauty = 2**):
 - Sensitive to CKM elements
 - CP-violation "workhorse"
 - Probe m_t^2/m_W^2
 - → First indication of large top mass! (1987)
- Sensitive probes of high mass

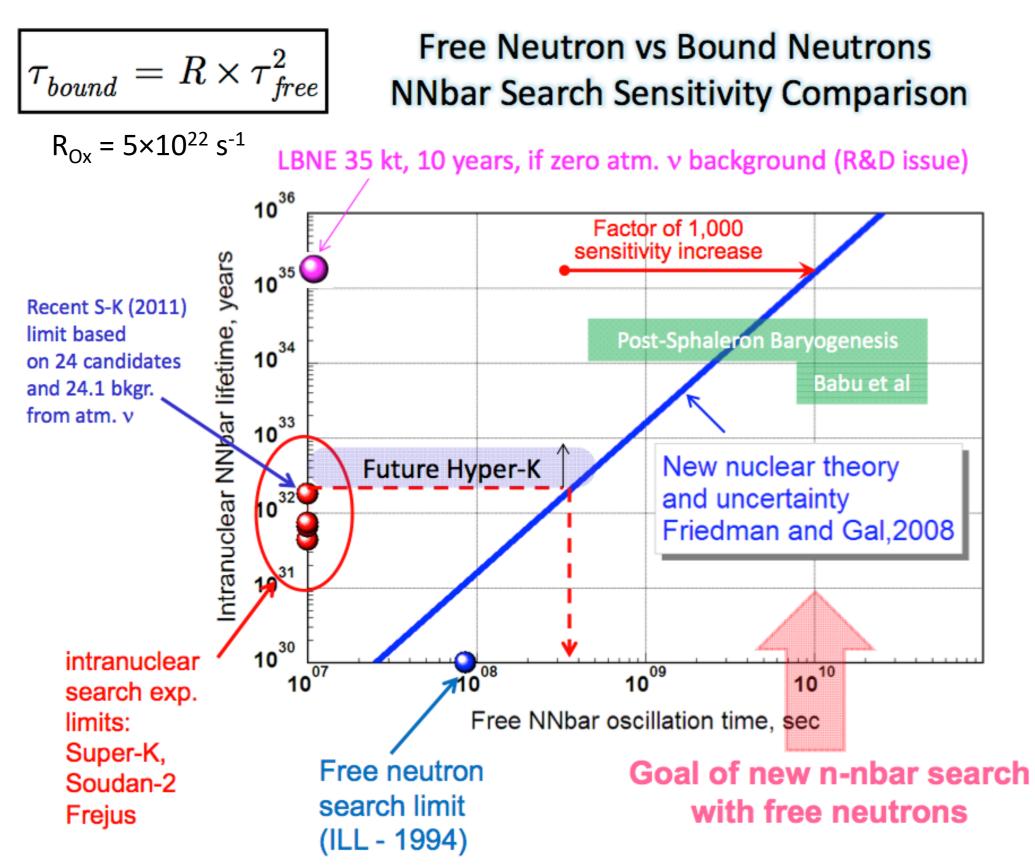
Neutrino Oscillations


Neutrino oscillations unambiguously establish neutrinos are massive

- Since neutral, Majorana mass term allowed
 - If exists, $\Delta L = 2!$
- If both Dirac and Majorana mass terms, mixing induces see-saw effect, *explaining* small neutrino masses
 - Two scales: Dirac and Majorana mass terms
 - Lead to observed scales $m_{\nu}\,{}^{\sim}\,m_{D}{}^{2}/M$ and $m_{N}\,{}^{\sim}\,M$
 - Dirac scale could be close to other fermions
 - Suggests a Majorana ($\Delta L=2$) scale $10^6 10^{10}$ GeV
- ΔB = 2 at a similar energy scale?

Experimental Aspects


Process, Critical Parameters

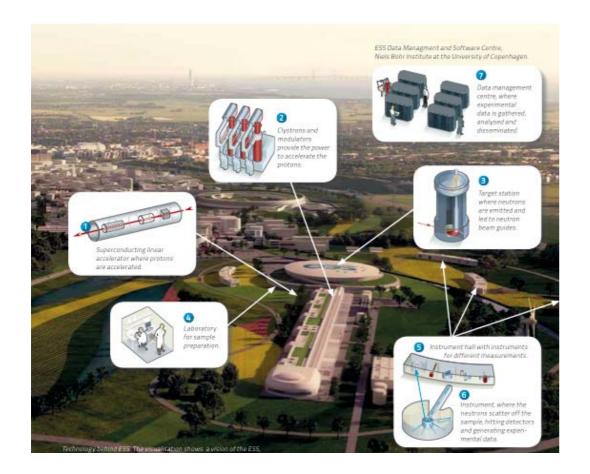

- Potential V (if different for n vs n)
 - Nuclear potential ~100 MeV
 - $\mu_n.B_{Earth} \sim 10^{-18} MeV$
 - Current limit: $\alpha < \sim 10^{-29}$ MeV (same order as nEDM)
- Strongly suppressed unless quasi-free condition holds (Vt/ħ<<1)
 - Free neutron experiment requires substantial cancellation of Earth magnetic field, then:
 - For free neutron experiment, magnetic field can be used to check result if signal is seen
 - A few operators identified that allow oscillation with B, but not present in usual BSM physics arXiv:1504.01176

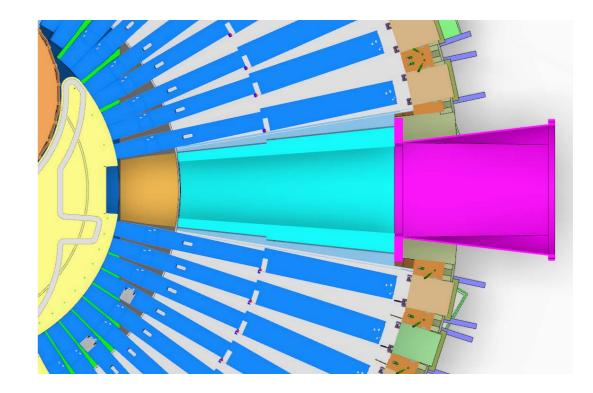
$$P_{n\to \overline{n}} = \left(\frac{\alpha}{\hbar} \times t\right)^2 = \left(\frac{t}{\tau_{n\overline{n}}}\right)^2$$

FOM: Nt²

- $Nt^2 = 1.5 \ 10^9 s$, P < 1.6 10^{-18} (run lasted ~1 year) and τ > 0.86 $10^8 s$
 - Many subtle optimizations to minimize losses and backgrounds
 - Experiment was background-free
- Bound neutron limits ~3 times better
 - But model-dependent, and now limited by atmospheric v background

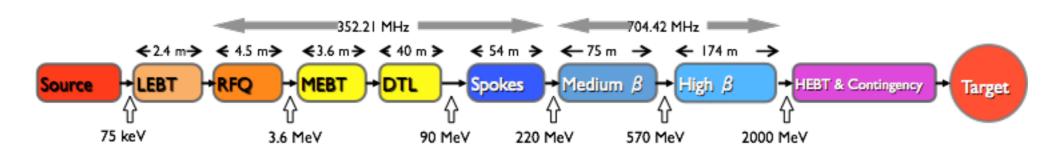
New physics could be enhanced or suppressed for bound neutrons


Next Generation Free Neutron Experiment


- Increase number of neutrons
 - Flux
 - Moderator brightness and area
 - Angular acceptance
 - Longer run
- Increase time-of-flight
 - Colder neutrons
 - Longer beamline
- Keep (or even increase) detection efficiency (~50%), keep background at ~0
 - Exploit current, established hardware and software technologies
- Better B_{Earth} suppression
 - Improved passive (+ active?) shield

Next Generation Free Neutron Experiment

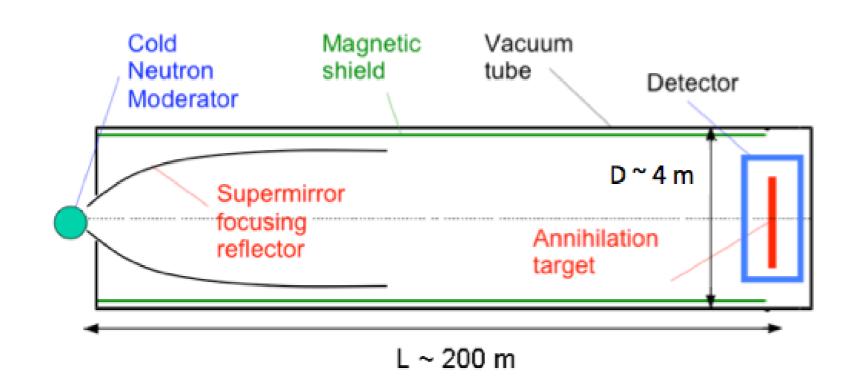
- Increase number of neutrons
 - Flux
 - Moderator brightness and area
 - Angular acceptance
 - Longer run
- Increase time-of-flight
 - Colder neutrons
 - Longer beamline
- Keep (or even increase) detection efficiency (~50%), keep background at ~0
 - Exploit current, established hardware and software technologies
- Better B_{Earth} suppression
 - Improved passive (+ active?) shield


European Spallation Source

Large beam port still in baseline! (details under discussion)

2.0 GeV superconducting linac, 14 Hz, 5 MW

ESS Timeline

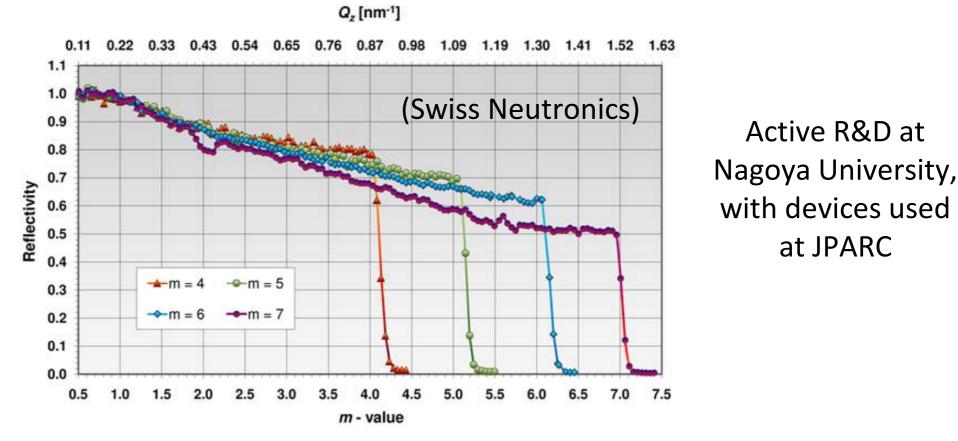

- 2014: ESS construction start
- 2019-2022: Initial phase: commissioning, intensity ramp, experiments by friendly users
 - Experiment construction begins (first source recycle?)
- 2023-2025: Initial user program operations: reliable operations with public users; establish basis for future cost sharing
 - Experiment construction completion, commissioning, physics start
- 2026+: routine operations, completion of final public instruments
 - Physics run

Next Generation Free Neutron Experiment

- Increase number of neutrons
 - Flux
 - Moderator brightness and area
 - Angular acceptance
 - Longer run
- Increase time-of-flight
 - Colder neutrons
 - Longer beamline
- Keep (or even increase) detection efficiency (~50%), keep background at ~0
 - Exploit current, established hardware and software technologies
- Better B_{Earth} suppression
 - Improved passive (+ active) shield

The Experiment

Conceptual Design

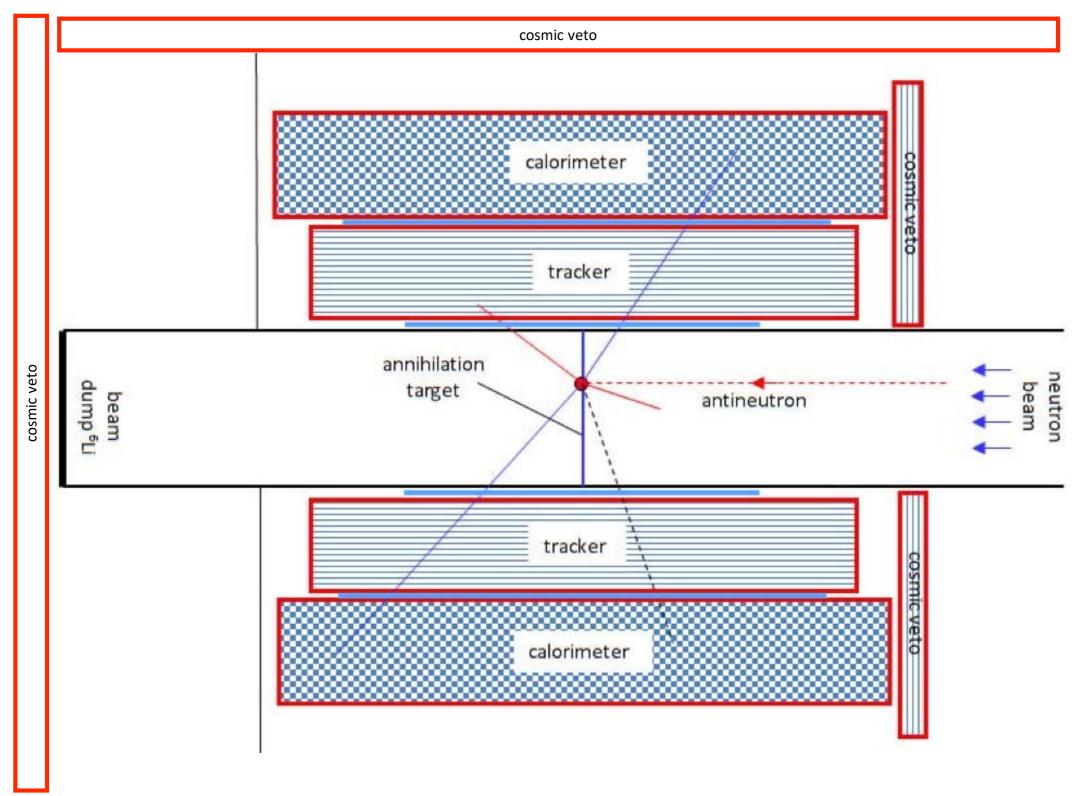

See e.g. NNbarX (Babu et al.), <u>http://arxiv.org/abs/arXiv:1310.8593</u>

- High-m super-mirror
- Residual B field < 5 nT
- Good vacuum < 10⁻⁵ Pa

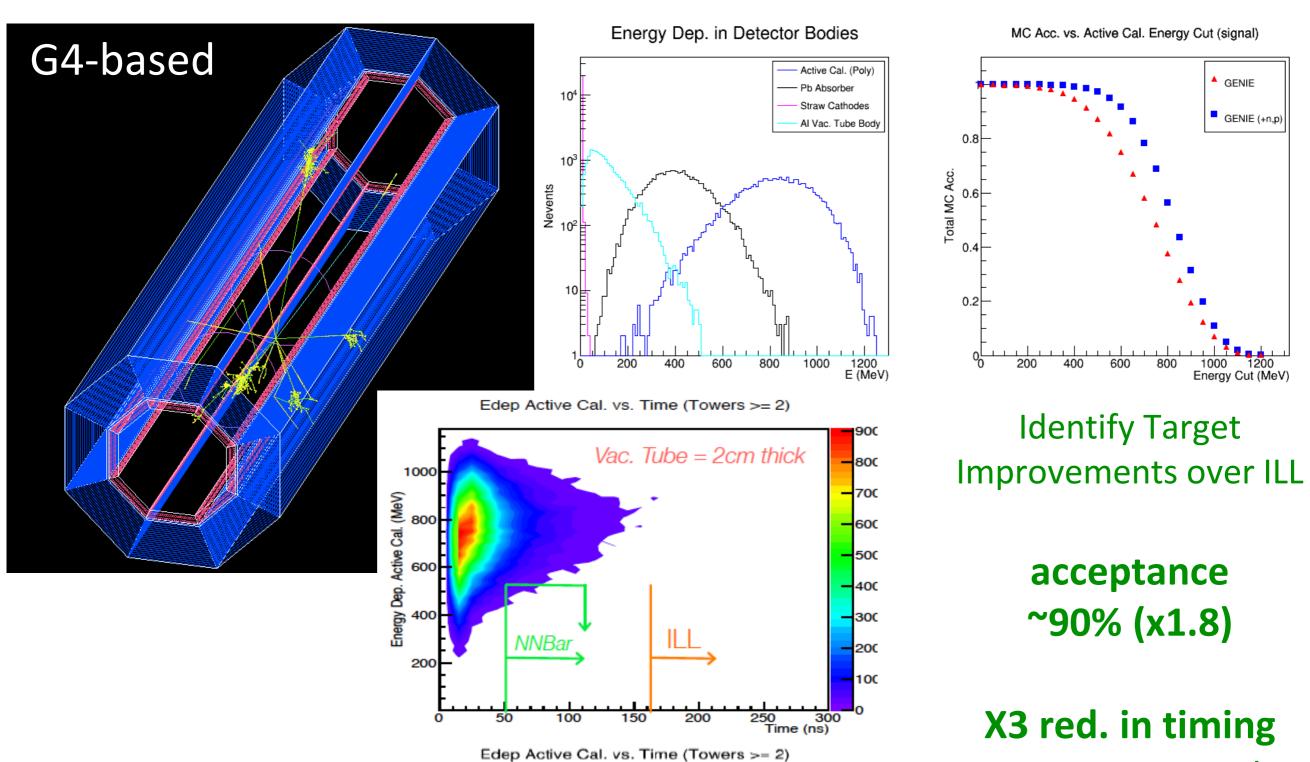
MC optimization of parameters ongoing!

Supermirror Reflector

- Crucial in acceptance gain
 - 2D, so acceptance scales quadratically
 - Modern multi-layer supermirrors have good reflectivity at increasingly large momentum transfers



Ni reflectivity \rightarrow 0 defines m=1



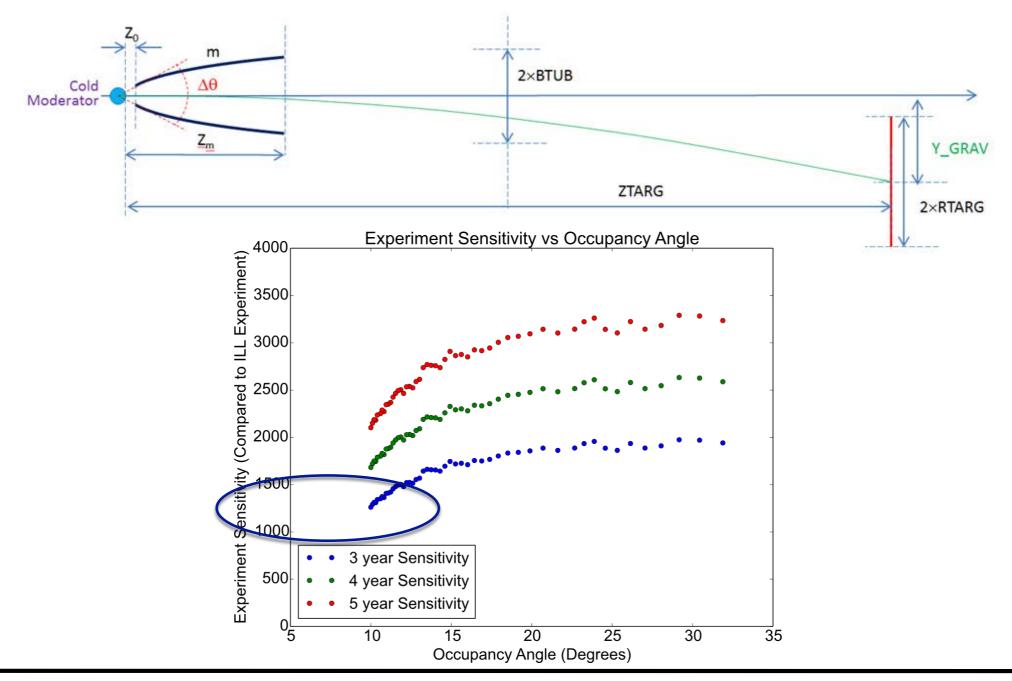
- Anti-neutron annihilation target
 - High annihilation probability, low Z, high transparency to neutrons
 - ILL experiment used a carbon foil, 130 μm thick
- Annihilation produces pions, <n>~5
- Background suppression:
 - Precise annihilation vertex identification of multitrack events
 - Good mass and position resolution
 - Beam time structure? (Mainly for background control samples)

Early Simulations: Detector

Lots of possibilities for detector development!

window (50 ns)

Expected Sensitivity



Brightness		≥1
Moderator Area	Needs large aperture	2
Angular Acceptance	2D, so quadratic sensitivity	40
Length	Scale with t ² , so L ²	5
Run Time	ILL run was 1 year	3
Total		≥ 1000

x 1000 in probability, reach τ $^{\sim}$ 2-3 x 10^9 s

Early Simulations: Sensitivity

- Neutron spectrum files from ESS
- 50% detection efficiency (as for ILL)

Collaboration

Expression of Interest for A New Search for Neutron-Anti-Neutron Oscillations at ESS

	Name	Affiliation
Main proposer	Gustaaf Brooijmans	Columbia University
Co-proposers	Torsten Åkesson	Lund University
	David Baxter	Indiana University
	Hans Calen	Uppsala University
	Lorenzo Calibbi	Université Libre de Bruxelles
	Luis Castellanos	University of Tennessee
	Joakim Cederkäll	Lund University
	Peter Christiansen	Lund University
	Christophe Clément	Stockholm University
	Brian Cole	Columbia University
	Caterina Doglioni	Lund University
	Claes Fahlander	Lund University
	Gabriele Ferretti	Chalmers University of Technology
	Peter Fierlinger	TU Munich
	Matthew Frost	University of Tennessee
	Franz Gallmeier	University of Tennessee, Oak Ridge National Laboratory
	Kenneth Ganezer	California State University Dominguez Hills
	Richard Hall-Wilton	ESS
	Vincent Hedberg	Lund University
	Lawrence Heilbronn	University of Tennessee
	Andreas Heinz	Chalmers University of Technology
	Go Ishikawa	Nagoya University
	Håkan Johansson	Chalmers University of Technology
	Tord Johansson	Uppsala University
	Leif Jönsson	Lund University
	Yuri Kamyshkov	University of Tennessee
	Masaaki Kitaguchi	Nagoya University
	Esben Klinkby	ESS, Technical University of Denmark
	Balasz Konya	Lund University
	Andrzej Kupsc	Uppsala University
	Mats Lindroos	ESS
	Else Lytken	Lund University
	Bernhard Meirose	University of Texas, Dallas
	David Milstead	Stockholm University
	Rabindra Mohapatra	University of Maryland
	Thomas Nilsson	Chalmers University of Technology
	Anders Oskarsson	Lund University
	Robert Pattie	Los Alamos National Laboratory
	Christoffer Petersson	Chalmers University of Technology
	David Phillips	North Carolina State University
	Amlan Ray	VECC, Kolkata, India
	Filippo Resnati	CERN
	Arthur Ruggles	University of Tennessee Physical Research Laboratory, Ahmedabad, India
	Utpal Sarkar Alexander Saunders	Los Alamos National Laboratory
	Hirohiko M. Shimizu	Nagoya University
	Robert Shrock	Stony Brook University
	David Silvermyr	Lund University
	Samuel Silverstein	Stockholm University
	Oxana Smirnova	Lund University
	Per Erik Tegner	Stockholm University
	Camille Theroine	ESS
	Lawrence Townsend	University of Tennessee
	Rick Van Kooten	Indiana University
	Albert Young	North Carolina State University
ESS coordinator	Camille Theroine	ESS

Collaboration growing

- ESS very supportive
 - Agreed to target area modifications needed
- Revisiting sensitivity studies now that ESS has frozen moderator configuration
- Regular collaboration meetings

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Neutron-antineutron oscillations: Theoretical status and experimental prospects

HYSICS REPORT

D.G. Phillips II ^{15,24}, W.M. Snow ^{5,2,*}, K. Babu ¹⁸, S. Banerjee ²¹, D.V. Baxter ^{5,2}, Z. Berezhiani ^{9,25}, M. Bergevin ²⁶, S. Bhattacharya ²¹, G. Brooijmans ³, L. Castellanos ^{1,6}, M.-C. Chen ²⁷, C.E. Coppola ³³, R. Cowsik ³⁵, J.A. Crabtree ¹⁷, P. Das ³⁴, E.B. Dees ^{15,24}, A. Dolgov ^{7,16,28}, P.D. Ferguson ¹⁷, M. Frost ³³, T. Gabriel ³³, A. Gal ²⁰, F. Gallmeier ¹⁷, K. Ganezer ¹, E. Golubeva ⁶, G. Greene ³³, B. Hartfiel ¹, A. Hawari ¹⁴, L. Heilbronn ³², C. Johnson ⁵, Y. Kamyshkov ³³, B. Kerbikov ^{7,11}, M. Kitaguchi ¹², B.Z. Kopeliovich ³¹, V.B. Kopeliovich ^{6,11}, V.A. Kuzmin ⁶, C-Y. Liu ^{5,2}, P. McGaughey ¹⁰, M. Mocko ¹⁰, R. Mohapatra ²⁹, N. Mokhov ⁴, G. Muhrer ¹⁰, H.P. Mumm ¹³, L. Okun ⁷, R.W. Pattie Jr. ^{15,24}, C. Quigg ⁴, E. Ramberg ⁴, A. Ray ³⁴, A. Roy ⁸, A. Ruggles ³², U. Sarkar ¹⁹, A. Saunders ¹⁰, A.P. Serebrov ²², H.M. Shimizu ¹, R. Shrock ²³, A.K. Sikdar ³⁴, S. Sjue ¹⁰, S. Striganov ⁴, L.W. Townsend ³², R. Tschirhart ⁴, A. Vainshtein ³⁰, R. Van Kooten ⁵, Z. Wang ¹⁰, A.R. Young ^{15,24}

Ongoing work modeling aspects of the oscillation coherence, magnetic field sensitivity, and detailed models of the ESS target and moderator geometry

Conclusion

- Search for n-n oscillation strongly motivated:
 - ΔB=2 baryon number violation appears in many models
 - Probe scales from 10⁵ 10¹² GeV
 - Connection with baryogenesis, neutrino masses, ...
- Experiment well within current capabilities
 - Very low technical risk plenty of opportunities to optimize the approach and improve the project!
- Substantial community exists
 - Bridges particle and nuclear physics communities
 - Synergies with ESS neutron scattering community
- Complementary to planned science at LHC (observable particle production...) and the Underground Physics program
- Exploration of test beam program and n-n' measurements by collaboration is underway
- Opportunities to gain a factor 1000 in sensitivity to processes at core of our existence and understanding of universe are rare

Should **not** be squandered

http://www.nnbar-at-ess.org