The aSPECT experiment – current status of the analysis

A. Wunderle^a, O. Zimmer^b, R. Virot^b, D. Stipp^a, T. Soldner^b, M. Simson^b, C. Schmidt^a, K. Ross^a, R. Maisonobe^b, G. Konrad^{c,d}, J. Kahlenberg^a, R. Horn^a, W. Heil^a, F. Glück^e, E. Bickmann^a, M. Beck^a, S. Baeßler^f

The aSPECT experiment:

Goal: Determine the β -v angular correlation coefficient ain free neutron decay with unprecedented precision

How to reach it: Measure proton spectrum with high precision using a MAC-E type spectrometer

Where we are:

- ✓ Successful beam time in 2013
- Check integrity and consistency of data
- Investigate systematic effects
- Determine a and its uncertainty

Top: Sketch of the measuring principle of aSPECT Left: Sketch of various correlation coefficients in free neutron decay

Systematic effects:

- **Uncertainty of Transmission Function:**
- Uncertainty of retardation voltage
- Fluctuations and offset due to surface potential differences and field leakage into decay volume
 - Error of multimeter
 - RF noise
- Uncertainty of magnetic field ratio
- Retardation voltage dependent background
- Detector efficiency and DAQ
 - Dead time
 - Pile Up
 - Backscattering of protons
- Edge effect
- Fields in the decay volume
- Small angle scattering

Top: Transmission Function Middle: Edge effect

From raw-pulse to proton spectrum

- . Determine first pulse using a spline
- 2. Generate pulse-height spectrum
- 3. Pulse-height spectrum for each retardation voltage
- 4. Integration over proton region
- 5. Each retardation voltage is a point in the integral proton spectrum

 $+1\delta$

Investigation of systematics

Determine the retardation voltage or count rate dependence of each systematic separately for each

- channel
- configuration

Implement each systematic as additional fit dimension to the global fit.

> Top, right:: Ret. volt. dep. background Bottom, left: Extrapolation to Δt Bottom, right:: Pile-up correction

Include all to ONE multi-dimensional fit

Extra dimensions for each

- channel of each configuration
- systematic

r_R included as fit parameter Uncertainty of U_{ret} included as x-errors

Resulting ideograms

- ^a Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany
- ^b Institut Laue-Langevin, Grenoble, France
- ^c Atominstitut, Technische Universität Wien, Austria ^d Stefan Meyer Institut, Austria
- ^e Institut für experimentelle Kernphysik, Karlsruher Institut für Technologie, Germany

