The aSPECT experiment – current status of the analysis **A. Wunderle**^a, O. Zimmer^b, R. Virot^b, D. Stipp^a, T. Soldner^b, M. Simson^b, C. Schmidt^a, K. Ross^a, R. Maisonobe^b, G. Konrad^{c,d}, J. Kahlenberg^a, R. Horn^a, W. Heil^a, F. Glück^e, E. Bickmann^a, M. Beck^a, S. Baeßler^f ## The aSPECT experiment: **Goal:** Determine the β -v angular correlation coefficient ain free neutron decay with unprecedented precision How to reach it: Measure proton spectrum with high precision using a MAC-E type spectrometer #### Where we are: - ✓ Successful beam time in 2013 - Check integrity and consistency of data - Investigate systematic effects - Determine a and its uncertainty Top: Sketch of the measuring principle of aSPECT Left: Sketch of various correlation coefficients in free neutron decay #### **Systematic effects:** - **Uncertainty of Transmission Function:** - Uncertainty of retardation voltage - Fluctuations and offset due to surface potential differences and field leakage into decay volume - Error of multimeter - RF noise - Uncertainty of magnetic field ratio - Retardation voltage dependent background - Detector efficiency and DAQ - Dead time - Pile Up - Backscattering of protons - Edge effect - Fields in the decay volume - Small angle scattering Top: Transmission Function Middle: Edge effect ## From raw-pulse to proton spectrum - . Determine first pulse using a spline - 2. Generate pulse-height spectrum - 3. Pulse-height spectrum for each retardation voltage - 4. Integration over proton region - 5. Each retardation voltage is a point in the integral proton spectrum $+1\delta$ # Investigation of systematics Determine the retardation voltage or count rate dependence of each systematic separately for each - channel - configuration Implement each systematic as additional fit dimension to the global fit. > Top, right:: Ret. volt. dep. background Bottom, left: Extrapolation to Δt Bottom, right:: Pile-up correction #### Include all to ONE multi-dimensional fit Extra dimensions for each - channel of each configuration - systematic r_R included as fit parameter Uncertainty of U_{ret} included as x-errors ### Resulting ideograms - ^a Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany - ^b Institut Laue-Langevin, Grenoble, France - ^c Atominstitut, Technische Universität Wien, Austria ^d Stefan Meyer Institut, Austria - ^e Institut für experimentelle Kernphysik, Karlsruher Institut für Technologie, Germany