

New Results from NOvA

Giulia Brunetti on behalf of the NOvA Collaboration

Neutrinos

Neutrino mix: flavors eigenstates are linear combinations of mass eigenstate

$$|v_{\alpha}\rangle = \sum_{k=1}^{n} U_{\alpha k} |v_{k}\rangle \quad (\alpha = e, \mu, \tau)$$

- Non-zero probability of detecting a different neutrino flavor than that produced at the source
 - depends on: squared mass difference, mixing angles, CP-violating phase, hierarchy....
- Mixing matrix for the three-flavor case:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\theta_{23} \sim 45^{\circ} \qquad \theta_{13} = 8.5^{\circ} \qquad \theta_{12} = 33.5^{\circ}$$

$$\Delta m_{23}^{2} \sim \pm 2.5 \times 10^{-3} eV^{2} \qquad \delta_{CP}? \qquad \Delta m_{21}^{2} = +7.5 \times 10^{-5} eV^{2}$$

Neutrinos

- Open questions:
 - Maximal mixing in the atmospheric sector? (θ_{23})
 - ightharpoonup CP-violation? (δ_{CP} , P(v_{μ}) vs P(\overline{v}_{μ}) , matter/antimatter asymmetry in the universe)
 - ► Hierarchy? $(sign(\Delta m_{23}^2))$, matter effects)
 - Majorana or Dirac? (IH & no 0νββ decays)
 - Absolute masses?

NOvA (NuMI Off-Axis v_e Appearance) Experiment

200+ collaborators41 institutions7 countries

b designed to answer the next generation of ν questions: tuned for v_e appearance in an almost pure v_u beam

NOVA

NuMI Off-Axis v_e Appearance Experiment

- NOvA is a long baseline (810 km), off-axis (14.6 mrad) neutrino oscillation experiment
- NuMl beam at Fermilab
- Energy peak @ 2 GeV
- 2 functionally identical detectors:
 - ▶ ND underground at Fermilab. 290-ton.
 - Used to predict event rate at the FD
 - ▶ FD on surface in Ash River, MN. 14-kton.

To look for oscillations

The NuMI beam

- 120 GeV protons onto a graphite target
- Secondary mesons charge-selected and focused by two magnets
- Pions decay into neutrinos/antineutrinos
- ▶ 6.05 10²⁰ POT in 14 kton equivalent detector
- Currently running at 560 kW, achieved 700 kW design goal in tests on June 13

NOvA Detectors

- Functionally identical, PVC cells filled with 10.2M Liters liquid scintillator
- Low-Z, 65% active volume, DAQ runs without deadtime (beam trigger, cosmic calibration samples, SNEWS, exotics)
- Read-out using WLS to APDs
- Cells organized in horizontal and vertical planes
- ▶ FD is 14 kton, ND is 0.3 kton

NOVA Physics

▶ 3-flavor oscillation analyses

- **▶** DISAPPEARANCE: ν_{μ} ($\overline{\nu}_{\mu}$) $\rightarrow \nu_{\mu}$ ($\overline{\nu}_{\mu}$)
 - $ightharpoonup \Delta m_{23}^2$, $\sin^2 2\theta_{23}$
- ► APPEARANCE: $v_{\mu} (\overline{v}_{\mu}) \rightarrow v_{e} (\overline{v}_{e})$
 - \triangleright θ_{13} , θ_{23} , δ_{CP} , mass hierarchy
 - ▶ Matter effects over 810 km $\rightarrow \pm 30\%$

- Good granularity
- X0 =38cm (6 cells depths, 10 cells widths)

- The principle:
 - ▶ Select v_{μ} CC sample: events with long tracks and distinctive dE/dx
- Extrapolation of the ND spectrum to the FD and measurement of the deficit
- ▶ 2-flavor oscillation approximation works well in this case:

$$P_{\mu\mu}\sim 1-sin^2 2\theta_{23}sin^2\left(\frac{\Delta m_{23}^2L}{4E}\right)$$

 $\theta_{23}\sim 45^\circ \rightarrow$ at the oscillation max almost all v_μ disappear

- NC and cosmic background suppression, containment cuts to remove events with activity close to the detector walls
- ν_{μ} ID: Multivariate kNN classifier using 4 variables:
 - ▶Track length
 - ▶dE/dx
 - Scattering along the track
 - ▶Track only fraction of planes
- ▶ 81% selection efficiency for signal with 95% purity

\triangleright ν_{μ} ND events

- Hadronic energy scale uncertainty from 14% to 5% with the addition of MEC events to the simulation (w.r.t. NOvA 2015 results)
- ▶ ND reconstructed energy spectrum unfolded and extrapolated to FD using Far/Near true ratio for prediction

 $Ev = E\mu$ (L track) + E_{had} (7% res)

ν_μ Disappearance

- \mathbf{v}_{μ} FD events: **78** events observed
 - ▶ No oscillation prediction: 473±30
 - ▶ Best oscillation fit: 82 events
 - ▶ Beam BG: 3.7, Cosmics: 2.9

χ2/NDF=41.6/17

driven by fluctuations in the tail, no pull in oscillation fit

ν_μ Disappearance

Our best fit (in NH): $|\Delta m^2_{32}| = 2.67 \pm 0.12 \cdot 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

- Fit for Δm^2 and $\sin^2\theta_{23}$
- Dominant systematic effects included in fit:
 - Normalization
 - NC background
 - ► Flux
 - Muon and hadronic energy scale
 - Cross section
 - Detector response and noise

Maximal mixing (θ_{23} =45°) excluded at 2.5 σ

ν_μ Disappearance

Our best fit (in NH): $|\Delta m^2_{32}| = 2.67 \pm 0.12 \cdot 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03}) \text{v}$

- Non-maximal fit is driven by bins in oscillation dip (1-2 GeV)
- Forcing maximal mixing gives:

$$|\Delta m^2_{32}| = 2.46 \cdot 10^{-3} \, eV^2$$

Improved event selection

CVN – Convolutional Visual Network: new event selection technique based on ideas from computer vision and deep learning

- Calibrated hit maps are inputs to the CVN
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved sensitivity equivalent to 30% more exposure

Improved event selection

CVN – Convolutional Visual Network: new event selection technique based on ideas from computer vision and deep learning

- Calibrated hit maps are inputs to the CVN
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved sensitivity equivalent to 30% more exposure

v_e Appearance

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$\alpha \sin 2\theta_{13} \cos \delta \frac{\sin(aL)}{(aL)} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \cos \Delta_{32} - \alpha \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{(aL)} \sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \sin \Delta_{32}$$

$$\Delta_{ij} \equiv \frac{1.27\Delta m_{ij}^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]}$$
$$a = G_F N_e \sqrt{2} \simeq (4000 \text{ km})^{-1}$$

- Depends simultaneously on θ₁₃, θ₂₃, δ_{CP}, sign(Δm²₃₁)
- \blacktriangleright $sin^2 2\theta_{13}$ =0.095 \rightarrow most v_{μ} go to v_{τ}
- Look for deviations due to hierarchy (matter effects) and CPviolation
- NOvA measures $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ at $\overline{2}$ GeV, different dependence on $sign(\Delta m_{32}^{2})$ and δ_{CP}

v_e Appearance

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$\alpha \sin 2\theta_{13} \cos \delta \frac{\sin(aL)}{(aL)} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \cos \Delta_{32} - \alpha \sin 2\theta_{13} \sin \delta \frac{\sin(aL)}{(aL)} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \sin \Delta_{32}$$

$$\Delta_{ij} \equiv \frac{1.27\Delta m_{ij}^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]}$$
$$a = G_F N_e \sqrt{2} \simeq (4000 \text{ km})^{-1}$$

- Depends simultaneously on θ₁₃, θ₂₃, δ_{CP}, sign(Δm²₃₁)
- \rightarrow $sin^2 2\theta_{13}$ =0.095 \rightarrow most v_{μ} go to v_{τ}
- Look for deviations due to hierarchy (matter effects) and CPviolation
- NOvA measures $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ at $\overline{2}$ GeV, different dependence on $sign(\Delta m_{32}^{2})$ and δ_{CP}
- $P \propto sin^2 \theta_{23}$
- Constrain a space region

- CVN PID, loosen cut on Pid optimized to favor parameter measurement
- ▶ Separate v_e CC interactions from backgrounds, backgrounds evaluated in ND:
 - intrinsic beam v_{e} , Neutral Currents, v_{u} CC, each propagate differently
 - Use ND data to predict background in the FD
- Looking for an excess in the FD

Expected events depend on oscillation parameters:

$$\sin^2\theta_{23} = 0.5, \pm 5\%$$
 syst.

Total Prediction (signal+background):

NH, 3π/2	IH, π/2
36.4	19.4

Background components (±10% syst):

Total BG	NC	Beam $v_{\rm e}$	$v_{\mu}CC$	$v_{\tau}CC$	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5

Each component extrapolated in bins of energy and CVN output

Total Prediction (signal+background):

NH, 3π/2	IH, π/2
36.4	19.4

Observed events in FD: 33

- Fit for hierarchy, $\delta_{\rm CP}$, $\sin^2\theta_{23}$
 - ► Constrain $\sin^2(2\theta_{13})=0.085\pm0.05$ from reactor
 - ► Constrain Δ m and $\sin\theta_{23}$ with NOvA disappearance results
 - Not a full joint fit, syst and other oscillation parameters not correlated
- ► Global best fit, preference for NH, $\Delta \chi^2 = 0.47$
 - $\delta_{CP} = 1.49\pi$, $\sin^2(\theta_{23}) = 0.40$
 - ▶ Both octants and hierarchies allowed at 1σ
 - ► IH lower octant around $\delta_{CP} = \pi/2$ excluded at 3σ

- Fit for hierarchy, δ_{CP} , sin² θ_{23}
 - Constrain $\sin 2(2\theta_{13}) = 0.085 \pm 0.05$ from reactor
 - Constrain Δ m and $\sin\theta_{23}$ with NOvA disappearance results
 - Not a full joint fit, syst and other oscillation parameters not correlated
- Global best fit, preference for NH, $\Delta \chi^2 = 0.47$
 - $\delta_{CP} = 1.49\pi$, $\sin^2(\theta_{23}) = 0.40$
 - \blacktriangleright Both octants and hierarchies allowed at 1σ
 - ► IH lower octant around $\delta_{CP} = \pi/2$ excluded at 3σ
- ► Antineutrino Run (planned for spring 2017) will help resolve degeneracies

Summary

- ► Early days for NOvA, our baseline program is six times our current exposure NOvA collected 6.05·10²⁰ POT, oscillation results:
 - \mathbf{v}_{u} disappear, maximal mixing is excluded at 2.5σ
 - \triangleright v_e appear:
 - slight preference for NH
 - ▶ IH lower octant around $δ_{CP} = π/2$ is exlcuded (>3 σ)
- Antineutrino run in spring 2017

- Many other interesting NOvA analyses!
 - sterile neutrinos, cross section measurements, supernovæ...

Argonne, Atlantico, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State, Czech Technical University, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, IIT-Hyderabad, Hyderabad, Indiana, Iowa State, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab, SDMT, South Carolina, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, UCL, Virginia, Wichita State, William and Mary, Winona State.

Back up

NuMI beam

- Beam performance
- ▶ 14mrad Off-Axis:
 - ► Neutrino energy spectrum peaked at 2GeV, width~20%

Reconstruction

Vertexing: Find lines of energy depositions w/ Hough transform CC events: 11 cm resolution

Clustering: Find clusters in angular space around vertex.

Merge views via topology and prong dE/dx

<u>Tracking:</u> Trace particle trajectories with **Kalman filter** tracker.

Also, **cosmic ray tracker**: lightweight, fast, and for large calibration samples, online monitoring.

- Calibration and energy scale: Cosmic ray muons are the standard candle
- Cells individually corrected for
 - ► Llight attenuation along cell length
 - Shadowing due to detector bulk
 - Threshold effects far from readout
- Energy scale set by dE/dx near the end of stopping muons
 - Cross-check including π0 mass peak, Michel-e⁻, beam muon dE/dx
 - ▶ Take 5% absolute and relative errors

- Calibration and energy scale: Cosmic ray muons are the standard candle
- Cells individually corrected for
 - Llight attenuation along cell length
 - Shadowing due to detector bulk
 - Threshold effects far from readout
- Energy scale set by dE/dx near the end of stopping muons
 - Cross-check including π0 mass peak, Michel-e⁻, beam muon dE/dx
 - ▶ Take 5% absolute and relative errors

Cosmic rejection

- 10µs spill window gives 10⁵ rejection
- Cosmic ray data in data are measured in time window adjacent to the spill
- Event topology+BDT provide additional O(10⁷) reduction
 - BDT inputs: track direction, track start and end point, track length, energy, number of hits

ND data suggest unsimulated process between QE and Δ production (Minerva experiment reported similar excess)

ND data suggest unsimulated process between QE and Δ production (Minerva experiment reported similar excess)

→enable GENIE empirical MEC (50% systematic on MEC component)

 \rightarrow reweight the model to match observation as a function of \vec{p} transfer

Reduction of largest systematics

- -Hadronic energy scale
- -QE cross section modeling

Reduction of single non-RES pion production by 50%

Near-Far Extrapolation – 3 step process

- 1) Convert ND reconstructed energy to true energy
- 2) Use Near/Far ratio to convert to FD true energy spectrum
- 3) Translate back to reconstructed energy

Systematic uncertainties

Systematic	Effect on sin²(θ ₂₃)	Effect on Δm ² 32
Normalisation	± 1.0%	± 0.2 %
Muon E scale	± 2.2%	± 0.8 %
Calibration	± 2.0 %	± 0.2 %
Relative E scale	± 2.0 %	± 0.9 %
Cross sections + FSI	± 0.6 %	± 0.5 %
Osc. parameters	± 0.7 %	± 1.5 %
Beam backgrounds	± 0.9 %	± 0.5 %
Scintillation model	± 0.7 %	± 0.1 %
All systematics	± 3.4 %	± 2.4 %
Stat. Uncertainty	± 4.1 %	± 3.5 %

In each case:

- The effect is propagated through the extrapolation
- We include those effects as pull terms in the fit
- The increase (in quadrature) of the parameter measurement error is recorded

Inverted hierarchy contours

- Best Fit $\chi^2/DOF = 41.5/17$ is driven by the tail
- ▶ There is no significant pull in the oscillation fit from bins in the tail

Fit-checks: best fit oscillation prediction matches other distributions well

Muon Selection

Muon Neutrino FD data

▶ 1-D profiles

$$\left| \Delta m_{32}^2 \right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$$

 $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Neutral Current Results

- \triangleright NC events in the ND with CVN classification, extrapolate to the FD \rightarrow prediction
- Count NC events in FD, compare to prediction
- For $\Delta m_{41}^2 = 0.5 \text{ eV}^2$ rapid oscillations in FD, minimal in ND
- Normalization agrees well
- Data shifted to lower energy relative to MC
 - No MEC model for NC events
 - Large uncertainties on NC cross section

Neutral Current Results

- Predicted events in the FD for 3-flavour mixing: 83.7 (60.6 NC, 4.8 v_{μ} CC, 3.6 beam v_{e} , 14.3 cosmics)
- Observed NC-like events in the FD: 95

No evidence of oscillations involving steriles, consistent within 1σ

For $0.05 \text{ eV}^2 < \Delta m_{41}^2 < 0.5 \text{ eV}^2$ $\theta_{34} < 35^\circ$, $\theta_{24} < 21^\circ$ (90% CL)

Excellent NC efficiency (50%) and purity (72%) promise strong future limits on θ_{34}

- \triangleright CVN: 73% v_e signal efficiency, 76% purity
- Use ND data to predict FD background, every component propagate differently:
 - ▶ Beam v_e CC

- low-E ν_e and ν_u trace back to the same π+ ancestor
- Use selected v_μ CC events to constrain beam v_e : reweight Kaon and Pion component to match the v_μ CC energy spectrum in the data
- Overall effect is a 4% increase \rightarrow Fix v_e CC to flux-reweighted in the ND
- \mathbf{v}_{μ} CC: use Michel-electron distribution to constrain

- Michel-e⁻ are produced also in v_e CC and NC by pions but v_u has ~1more
- ▶ Fit observed N_{michel} in each bin
- Data excess assigned between NC(+10%) and v_{μ} CC (+10%)

- \triangleright CVN: 73% v_e signal efficiency, 76% purity
- Use ND data to predict FD background, every component propagate differently:
 - ▶ Beam v_e CC

- low-E ν_e and ν_μ trace back to the same π+ ancestor
- Use selected v_{μ} CC events to constrain beam v_{e} : reweight Kaon and Pion component to match the v_{μ} CC energy spectrum in the data
- Overall effect is a 4% increase \rightarrow Fix $v_{\rm e}$ CC to flux-reweighted in the ND
- ν_{μ} CC: use Michel-electron distribution to constrain

- Michel-e⁻ are produced also in v_e CC and NC by pions but v_u has ~1more
- ► Fit observed N_{michel} in each bin
- Data excess assigned between NC(+10%) and v_{μ} CC (+10%)

Checking Signal Efficiency

► Far detector: Remove muon track in cosmic rays to select Brem. Showers → simulation of EM showers matches well

 Near Detector: replace muon tracks from ν_μ CC data with simulated electron showers → data/MC difference < 1%

FD data

FD data

Systematics

Selection

