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The near Future? 

Jules Vernes, 1875 (1874?) 
 • Et qu’est-ce qu’on brûlera à la place du 

charbon? 
•  L’eau, répondit Cyrus Smith. 
• L’eau, s’écria Pencroff, l’eau pour chauffer 

les bateaux à vapeur et  
les locomotives, l’eau pour chauffer l’eau ! 
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Top Level Target 

COP21 
 Swiss national target: 
2030: Greenhouse gas emissions 37.6 Mio t CO2eq.  
(70% compared to 1990; 2014: 48.71 Mio t CO2eq.) 
15. 072 Botschaft zum Verfassungsartikel über ein Klima- und 
Energielenkungssystem  vom 28. Oktober 2015  

 



Energy Strategy 2050 

(new) Combined Cycle 

(new) Renewable 
Nuclear 

Electricity -Imports 

Hydro 
(new) Hydro 

Anticipated Consumption Consumption 

« Turnaround » Today 

! 
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Top Level Target 

ES 2050 
 Security of Energy Supply 
• No new nuclear power plants 
• Increase efficiency 
• Cap/reduce consumption 
• Ramp up Renewables 

 

COP21 
 Swiss national target: 
2030: Greenhouse gas emissions 37.6 Mio t CO2eq.  
(70% compared to 1990; 2014: 48.71 Mio t CO2eq.) 
15. 072 Botschaft zum Verfassungsartikel über ein Klima- und 
Energielenkungssystem  vom 28. Oktober 2015  

 



Motivation 

Key Messages 
 • Major applications: Heat generation 

(~50 %) and transportation. 
• Major energy carriers: Electricity 

(~25%) and transportation fuels. 
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Schweizerische Gesamtenergiestatistik 2014 



SCCER Heat & Electricity Storage 
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What we are 

Key Messages 
 • Research network. 

• Centralistic organized  
• 130 People ~ 70 FTE. 
• 30 M CHF worth of funding. 
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Timescales for Heat Storage 
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Timescales for Heat Storage 

Key Messages 
 Renewable heat (domestic) 
• Solar Thermal, Solar PV (Heat Pump) 
• Colling and hot water demand  

matches energy supply profile 
Short term heat storage (days) 
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Timescales for Heat Storage 

Key Messages 
 Renewable Heat (domestic) 
• Solar Thermal, Solar PV (Heat Pump) 
• Colling and hot water demand  

matches energy supply profile 
 Short term heat storage (days) 

 
Space heat demand is anticyclic to energy supply! 
Long term heat storage ~6 month. 
35% of primary energy cut out the bill! 
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Timescales for Heat Storage 

Space heating and hot water 
 Renewable heat (domestic) 
• Solar Thermal, Solar PV (Heat Pump) 
• Colling and hot water demand  

matches energy supply profile 
 Short term heat storage (days) 

 
Space heat demand is anticyclic to energy supply! 
Long term heat storage ~6 month. 
35% of primary energy cut out the bill! 

 

EcoheatCool The European Marktet Final Report 2005 
https://www.euroheat.org/wp-content/uploads/2016/02/Ecoheatcool_WP1_Web.pdf 

Industrial processes 

For specific temperature levels 
• Efficiency increase (recuperation). 
• Peak shaving option to match  

energy supply profile. 
• Enables AA-CAES. 
• Increase utilization  

(Thermal Solar Power plant)  
 Short term heat storage (hours to days) 
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Timescales for Electricity Storage 

Key Messages 
 Long-term storage 
• PV: April – Sep. -> Storage Oct. – April, 7 Month! 
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Timescales for Electricity Storage 

Key Messages 
 Long-term storage 
• PV: April – Sep. -> Storage Oct. – April, 7 Month! 
• PV+Wind: Bottleneck Oct-Nov, Feb-March, 2-4 Month 
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Timescales for Electricity Storage 

Key Messages 
 Long-term storage 
• PV: April – Sep. -> Storage Oct. – April, 7 Month! 
• PV+Wind: Bottleneck Oct-Nov, Feb-March, 2-4 Month 
• Example Nov 2015: 2 out of 4 weeks fine,  

one bad week. 
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Timescales for Electricity Storage 

Key Messages 
 Long-term storage 
• PV: April – Sep. -> Storage Oct. – April, 7 Month! 
• PV+Wind: Bottleneck Oct-Nov, Feb-March, 2-4 Month 
• Example Nov 2015: 2 out of 4 weeks fine,  

one bad week. 
• Week 45, Nov 2015, 5 days low wind, low sun.  

Long-term storage in the order of Weeks  
IF Wind AND PV are sourced in a good way. 
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Timescales for Electricity Storage 

Key Messages 
 Long-term storage 
• PV: April – Sep. -> Storage Oct. – April, 7 Month! 
• PV+Wind: Bottleneck Oct-Nov, Feb-March, 2-4 Month 
• Example Nov 2015: 2 out of 4 weeks fine,  

one bad week. 
• Week 45, Nov 2015, 5 days low wind, low sun.  

 Long-term storage in the order of Weeks  
IF Wind AND PV are sourced in a good way. 

Short-term storage 
Peak shaving e.g. with battery storage. 

 



Mission 
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Mission 
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Mission 
 Advancing research, development and technologies in the field of 

 
• electricity and heat storage  
• conversion and storage of energy in fuels  
• overall technology interactions  
 
by bridging activities from fundamentals to applications and the 
technology transfer in industrial environment 

Today 

2030-2050 
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Mission 
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Mission 
 Advancing research, development and technologies in the field of 

 
• electricity and heat storage  
• conversion and storage of energy in fuels  
• overall technology interactions  
 
by bridging activities from fundamentals to applications and the 
technology transfer in industrial environment 

Today 

2030-2050 



Thermal Energy Storage Systems 
 

Heat Storage 

Storage of 
thermal energy 
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Medium term (10-15y) 

Short term (<10y) 
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Advanced Batteries and Battery Materials 
 

Battery Storage 

Storage of 
electrical energy 
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Fromm 

Villevieille 
Sennhauser 

Fuerst 
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Short term (<10y) 
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H2 Production &  
Storage 

WP 3 

Züttel 
Sivula 
Girault 

Laurenczy 

Hydrogen Production and Storage 
 

Medium term (10-15y) 

Short term (<10y) 

Long term (>15y) 

    
    

   
   

      
   
       

   
    

      
   

    
     

     
   

    
     

   
    

    
   

   
 

Power to Hydrogen 
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Catalytic and Electrocatalytic CO2 Reduction 
 

Catalytic & 
Electrocatalytic 
CO2 Reduction 

WP 4 

Dyson 
Coperet 

Broekmann 
Schmidt 
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Long term (>15y) 

     
    

    
   

        
    

      
     

   
        
  

       
       

  

  
   

  
        
       

     
  

     
      

        
     

 

Power to X 
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System 
Modeling 
Worlitschek 
Patel  
Bauer  
Friedl 

  
 
 

Assessment of Energy Storage 
 

Energy System 

Component 

  
     

       
     

    
     

    
    
  

 
 

Technology Assessment 

     
    

    
      
       

       
       

    
  
        

     
WP 5 
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Advanced Batteries and Battery Materials 
 

Battery Storage 

Storage of 
electrical energy 

Kovalenko 
Fromm 

Villevieille 
Sennhauser 
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Short term (<10y) 

28 



Advanced Batteries and Battery Materials 
 

Battery Storage 

WP 2 

Kovalenko 
Fromm 

Villevieille 
Sennhauser 

Fuerst 
 

  
 y 

  

Li-ion batteries 
• Cost effective synthesis  

of nano sized (NS) anode  
(Sn/Sb, metal phosphides, 
Sb-P composites) 

• Cathode materials  
(BiF3, LiCoO2, LiMnPO4) 

• Core-shell Sn/C composites 
 

  
     

     
     

    

     
      

    
 

Short term (<10y) Cell testing 
• Cells investigated by impedance  

spectroscopy, surface analysis.  
• Models for optimized operation of  

storage battery systems designed. 

Pilot Manufacturing Line 
• Technology screening finalized  
• Test plan to optimize parameters  

for slitting and welding in place.  
• Prototype production of battery electrodes 

on newly developed processing machinery  
tested with NS-LiCoO2.. 
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RFB Hydrogen Production 

Power to Hydrogen 
 

WP 2 Short term (<10y) 
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RFB Hydrogen Production 

Power to Hydrogen 

WP 2 Short term (<10y) 

    
    

   
   

      
   
       

25 – 40 Wh/L Cathodic reaction 

VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 

E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 
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Power to X 
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Patel  
Bauer  
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Dyson 
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Broekmann 
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32 



Power to X 

Photovoltaic 

Wind 

Fuel cell 

CO, H2 conv. 

co-Electrolysis CO2, H2 conv. CxHy0z storage 

Geothermal 

H2 

CO2 

CxHy0z storage 

H2 storage Electrolysis 

RFB, mod 
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H2 Production &  
Storage 

WP 3 

Züttel 
Sivula 
Girault 

Laurenczy 

Hydrogen Production and Storage 
 

Medium term (10-15y) 

Short term (<10y) 

Long term (>15y) 

    
    

   
   

      
   
       

   
    

      
   

    
     

     
   

    
     

   
    

    
   

   
 

Power to Hydrogen 
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RFB Hydrogen Production 

Power to Hydrogen 
 

WP 2 Short term (<10y) 
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RFB Hydrogen Production 

Power to Hydrogen 

WP 2 Short term (<10y) 

    
    

   
   

      
   
       

25 – 40 Wh/L Cathodic reaction 

VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 

E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 
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RFB Hydrogen Production 

Power to Hydrogen 

WP 2 Short term (<10y) 

25 – 40 Wh/L Cathodic reaction 

VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 
E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 

2V3++ H2
 2V2++ 2H+ 

 

Mo2C 
Discharge 
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RFB Hydrogen Production 

Power to Hydrogen 

WP 2 Short term (<10y) 

25 – 40 Wh/L Cathodic reaction 

E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 

2V3++ H2
 2V2++ 2H+ 

 

Mo2C 
Discharge 
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VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 



RFB Hydrogen Production 

Power to Hydrogen 

WP 2 Short term (<10y) 

25 – 40 Wh/L Cathodic reaction 

E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 

2V3++ H2
 2V2++ 2H+ 

 

Mo2C 
Discharge 
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VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 

VO2+ + H2O  VO2
+  +  2H+ + e- 

Discharge 
SO2 + 2H2O  H2SO4

  +  2H+ + 2e-   E0=0.158 V 
Discharge 

E0=0.991 V 



RFB Hydrogen Production 

Results Phase I 

WP 2 Short term (<10y) 
H2 Production  RFB 
• 10 kW/40 kWh all-vanadium RFB with hydrogen 

generation bypass developed from TRL 3 to TRL 6 
• 1.8 kgH2/day (17 hrs) 1.3 kg of H2 proven 

25 – 40 Wh/L Cathodic reaction 

E0=0.991 V 

Anodic reaction 

V3+ V2++e- 
Charge 

Discharge 

E0=-0.255 V 

2V3++ H2
 2V2++ 2H+ 

 

Mo2C 
Discharge 

Green Chem., 2016, 18, 1785–1797 
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VO2+ + H2O  VO2
+ + 2H+ + e- 

Charge 

Discharge 

VO2+ + H2O  VO2
+  +  2H+ + e- 

Discharge 
SO2 + 2H2O  H2SO4

  +  2H+ + 2e-   E0=0.158 V 
Discharge 

E0=0.991 V 



Hydrogen Production Alternatives to Pt/Ir 

Results Phase I 

WP 2 

   
    

      
   

   
 

Medium term (10-15y) 

Long term (>15y) 
 Xiaoyun Yu, Mathieu S. Prévot, Néstor Guijarro & Kevin Sivula Nature Communications 6, 01 July 2015  

 

M. M. Nowell, J. O. Carpenter; 
 MICROSCOPY TODAY Sept. 2007 

 

 
OER 
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Hydrogen Production Alternatives to Pt/Ir 

Results Phase I 

WP 2 

   
    

      
   

   
 

H2 Production TMD 
• MoS2, TaS2, VS2  

Medium term (10-15y) 

Long term (>15y) 
 Xiaoyun Yu, Mathieu S. Prévot, Néstor Guijarro & Kevin Sivula Nature Communications 6, 01 July 2015  

 

M. M. Nowell, J. O. Carpenter; 
 MICROSCOPY TODAY Sept. 2007 

 

 
OER 
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Hydrogen Production Alternatives to Pt/Ir 

Results Phase I 

WP 2 

   
    

      
   

   
 

H2 Production TMD 
• MoS2, TaS2, VS2  

Medium term (10-15y) 

Long term (>15y) 
 Xiaoyun Yu, Mathieu S. Prévot, Néstor Guijarro & Kevin Sivula Nature Communications 6, 01 July 2015  

 

 
HER WSe2  

M. M. Nowell, J. O. Carpenter; 
 MICROSCOPY TODAY Sept. 2007 

 

 
OER 
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Hydrogen Storage 

Power to Hydrogen 

WP 2 
Medium term (10-15y) 

Long term (>15y) 
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Hydrogen Storage 

Power to Hydrogen 

WP 2 
H2 Storage Formic Acid 
• abundant catalyst for formic acid 

dehydrogenation was identified 
to replace the Ruthenium 

Dehydrogenation 
Pathway 

Hydrogenation 
Pathway 

Medium term (10-15y) 

Long term (>15y) 
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Hydrogen Storage 

Power to Hydrogen 

WP 2 
H2 Storage Formic Acid 
• abundant catalyst for formic acid 

dehydrogenation was identified 
to replace the Ruthenium 

H2 Storage Physisorbed NS 
• Ti(BH4)3 incorporated into 

metal organic framework 
(stable) 

Dehydrogenation 
Pathway 

Hydrogenation 
Pathway 

Medium term (10-15y) 

Long term (>15y) 
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Catalytic and Electrocatalytic CO2 Reduction 
 

Catalytic & 
Electrocatalytic 
CO2 Reduction 
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Power to X 
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CO2 Reduction – Economic View 

Power to X 

WP 2 
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[ $ kg-1 ] [ Mt y-1 ] 

H2 steam reforming, partial oxidation of methane or gasification of coal  2-4 65 

CH4 methanogenesis or hydrogenation of CO2 <0.08 (0.25) 2400 

C2H4 pyrolysis or steamcracking 0.8-1.5 141  

CO Boudouard reaction  0.65 210000 

HCOO- /HCOOH hydrolysis from methyl formate and formamide  or by-product of acetic acid production 0.8-1.2 0.8  

CH3OH From natural gas, coal, biomass, waste  0.4-0.6 100[ 

J. Durst, A. Rudnev, A. Dutta, Y. Fu, J. Herranz, V. Kaliginedi, A. Kuzume, A. A. Permyakova, Y. Paratcha, P.  Broekmann, T. J. Schmidt,  
CHIMIA 2015, VOLUME 69, NUMBER 12/15, Pages 769 ff 

   
    

51 



Electro-Catalytic CO2 Reduction 

Results Phase I 

WP 2 Long term (>15y) 
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[ $ kg-1 ] [ $ kg-1 ] 

H2 steam reforming, partial oxidation of methane or gasification of coal  2-4 4 

CH4 methanogenesis or hydrogenation of CO2 <0.08 (0.25) 2-4 

C2H4 pyrolysis or steamcracking 0.8-1.5 1.6-3.2  

CO Boudouard reaction 0.65 0.27-0.54 

HCOO- /HCOOH hydrolysis from methyl formate and formamide  or by-product of acetic acid production 0.8-1.2 0.17-0.34  

CH3OH From natural gas, coal, biomass, waste 0.4-0.6 0.7-1.4 
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Electro-Catalytic CO2 Reduction 

Results Phase I 

      
     

   
        
  

       
       

  

     
    

    
   

        
    

Long term (>15y) 

H2 

CH4 CO 

CO2  
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Electro-Catalytic CO2 Reduction 

Results Phase I 

      
     

   
        
  

       
       

  

     
    

    
   

        
    

Long term (>15y) 

H2 

CH4 CO 

CO2  
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Electro-Catalytic CO2 Reduction 

Results Phase I 

      
     

   
        
  

       
       

  

     
    

    
   

        
    

Long term (>15y) 

Electro-Catalytic CO2 
• Nano- and mesoporous electrocatalysts  
• Sn: FE > 80 % formate   
• Cu: FE > 45 % C2-product  
• Selectivity and activity depend on morphology.  
• Soluble, stable and electro catalytic active ionic liquid  

co-catalysts for CO production (FE for CO > 90 %).  
• 1A/cm2 for co-electrolysis cell level demonstrated 

H2 

CH4 CO 

CO2  
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System 
Modeling 
Worlitschek 
Patel  
Bauer  
Friedl 

  
 
 

Assessment of Energy Storage 
 

Energy System 

Component 

  
     

       
     

    
     

    
    
  

 
 

Technology Assessment 

     
    

    
      
       

       
       

    
  
        

     
WP 5 
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Power to Gas @ SCCER Hae 

Power to X Demostrators and Pilots 

      
     

   
        
  

       
       

  

     
    

    
   

        
    

Component 

H2 Production  RFB 
• 1.8 kg H2/day (17 hrs)  

1.3 kg of H2 proven 
• η: 50% (el.-> H2) 
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Power to Gas @ SCCER Hae: ESI 

      
     

   
        
  

       
       

  

     
    

    
   

        
    

Component 

Energy System Integration Platform 
 
• System Power ~10 kW -100 kW 
• Exchangeable units 
• Virtually linked with PV supply, and  

consumer (NEST, Mobility Demostrator) 
• Currently under commissioning 
• Start of operation Fall 2016 

Research Question: 
Understand the system interaction in terms of 
• Controls 
• Dynamics 
• Efficiency 
• Economics 

Power to X Demonstrators and Pilots 
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Power to Gas @ SCCER Hae: Demonstrator at HSR 

Technical Specification 
• Commercial components (Etogas, Climeworks) 
• Power input: 31 kW (excl. CO2 capt.) 
• PV panels 7kWp 
• CO2 sources:  

• Bottles 
• Climeworks unit 
• Raw biogas (waste water treatment) 

• Gas production 1m3/h (92% CH4, 3% H2, 4% CO2) 
• Start of operation 01.01.2015 

 
Energy System 

Power to X Demonstrators and Pilots 
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Power to Gas @ SCCER Hae: Demonstrator at HSR 

Energy System 

η = 35% (38%) 

η = 53% 

η = 77% 

Power to X Demonstrators and Pilots 
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Power to X LCA 

Power to Gas @ SCCER Hae: Ecologic Aspects 

Power to Methane for Mobility  
• PEM Electrolysis (1 MW) with PV Supply 
• CO2 captured from clinker production with hard coal powered 

– grid 
• Thermo-chemical methanantion 
 Power source matters 
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Power to X LCA 

Power to Gas @ SCCER Hae: Economic Aspects 

D. Parra, M. Patel International Journal of Hydrogen Energy, Volume 41, Issue 18, 18 May 2016, Pages 7527-7528  
  

Alkaline versus PEM and Hydrogen versus Methane are compared for Power to Hydrogen 
•  Wholesale electricity market operation was optimised for each configuration. 
•  Alkaline electrolysers operated with 11% lower capacity factor than PEM systems. 
•  The levelised cost of PEM systems was 15% higher than alkaline systems. 
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Technology Assessment and Summary 

Technology Assessment Aspects 

Energy storage on (inter-) national scale:  
•  Pumped hydro (PH) is most efficient and economic but almost completely utilized. 
•  Battery for short term OK (peak shaving, load shifting @ home). 
•  Good chance for AA-CAES 
• P2X required for long-term storage transportation and chemical sector. 
 



74 

Technology Assessment and Summary 

Technology Assessment Aspects 

Energy Storage on (Inter-) National Scale:  
•  Pumped hydro (PH) is most efficient and economic but almost completely utilized. 
•  Battery for short term OK (peak shaving, load shifting @ home). 
•  Good chance for AA-CAES 
• P2X required for long-term storage transportation and chemical sector. 
 Storage in the order of weeks (~400h) needed 
IF Wind AND PV are sourced in a good way. 
 



Thermal Energy Storage Systems 
 

Heat Storage 

Storage of 
thermal energy 

Haselbacher 
Haussener 

Barbato 
Rommel 

Roth 
Ribi 

Worlitschek 
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75 
   

  
 
    

     
   

 



Residential, Seasonal, Thermal Energy Storage Systems 
 

Heat Storage 

     
    
       

     
  

      
  

 
   

     
   

     
  

    
 

Short term (<10y) 

Seasonal storage, sorption based 
• Prototype installed 
• 250 kJ/m3, η=0.6 
• Absorption process has to be 

improved (low exchanged 
power; improve numerical 
model) 
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Sonnenkollektoren

Heizkreis
Warmwasser

Wärme-
pumpen-

BoilerWärme-
pumpe

Puffer-
speicher Eisspeicher

Seasonal storage, ice based 
• Measured seasonal system 

performance figure JAZSys: 5.2 
 
 

 
 

 



High Temperature, Industrial, Thermal Energy Storage 
Systems 

 

Results Phase I 

High temperature latent heat Storage 
• First composite structures produced and tested 

for performance at the level of materials 
properties for Heat storage application 

• 550 °C, 1.2 kJ/cm3 (0.5J/Kg) Al12Si 
• 20 CHF/kWhth 

AA-CAES 
• Simulations have demonstrated the validity of 

the combined sensible/latent storage concept 
• Low storage material cost:  

5-10 $/kWhth 
• AA-CAES Pilot to be commissioned 

77 
   

  
 
    

     
   

 

Medium term (10-15y) 
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Overall Summary 

Energy Storage in a Nutshell 

Heat storage is relevant and under investigation 
•  Seasonal low temperature 
•  Short term high temperature 
Battery storage is investigated  
•  incrementally (Li ion) to get a more reliable product 
•  “disruptive” (Na ion) to get a more economic product for stationary application 
Power to Hydrogen 
•  Alternative method (RFB) 
•  Precious metal free catalysts 
•  Storage options 
Power to X 
•  Synthesis of hydrocarbons (Methane was found as not Ideal for economic reasons) 

Catalytic  
Electrocatalytic 

Technology Assessment 
•  Tools are developed and will be further used. 

Result: Power to gas needs additional business options 
            Good chance for AA-CAES 

                      P2X required for long-term storage transportation and chemical sector. 
 



Mission, Status at End of Period I 
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Mission 
 Advancing research, development and technologies in the field of 

 
• electricity and heat storage  
• conversion and storage of energy in fuels  
• overall technology interactions  
 
by bridging activities from fundamentals to applications and the 
technology transfer in industrial environment 

Observation 
 Technology and science are on track,  

business plans and legislation are not. 
 

Quo Vadis Helvetia ? 
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Further reading and information 

Save the date:  
 

www.sccer-hae.ch 



Andreas Abdon ,TEVT, HSLU 
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