Criteria-based approach for optimization of PMF solutions

A case study: ACSM data from Zurich

Criteria-based selection tool in SoFi-6

- Criteria-based selection (optimization) tool is a part of the SoFi-6 software package.
- It is not included into the standard (free) package (a manual choice only).
- Can be provided upon request by PSI
- Ask Francesco Canonaco or Andre Prevot

Criteria-based selection tool in SoFi-6

Types of criteria and expression

. o onto on o o mo	lo olitolia			
Crit. type selec	ct 💌	Entry	apply	res
Data type selec	ct 💌	Entry II	apply	res
Data Select da	ata ty 💌 🛛 ac	d Entry III	apply	res
Operations selec	ct 💌 ac	d Entry IV	apply	res
	The second second	() () () () () () () () () ()		
criteria thresh	nold	weight vector	Apply and c	alculate
criteria thresh	nold	weight vector	Apply and c	alculate blot
unite riteria thresh	reset last list	veight vector Criteria-plot Criteria-dis	Apply and c Sanity p	alculate
virite riteria thresh	reset last list list	or criteria weight vector Criteria-plot Criteria-dis type of criteria	Apply and c Sanity r str.	alculate
viite riteria thresh	Criterion-distr.	or criteria i reset list weight vector Criteria-plot Criteria-dis type of criterio	tr.	alculate olot m F c F c F c F c F c F c F c F c F c F

- Maximum / minimum
- R- or R²-Pearson
- Linear Regression
- Can be defined for
 - one factor or a linear combination
 - time series or diurnal cycles
 - hours
 - profile
 - variable or explained variation

Criteria-based selection

PMF_criteria		
I. Define one or more criteria		
Crit. type select 💌	Entry I	apply reset
Data type profile 💌	Entry II profile	apply reset
Data Select data ty 💌	add Entry III	apply reset H
Operations select 💌	add Entry IV	apply reset in t
total criterion		
write reset last criteria threshold	list of criteria reset list weight vector	Apply and calculate
II. Criteria score		
Criterion-plot Criterion-distr.	Criteria-plot Criteria-distr.	ion:

- Criteria relative weights
- To position unconstrained factors
- Hard criteria (threshold values)
- Soft criteria (cut-off of the solutions with maximum scores)
- Manual choice (a marquee selection from different histograms)

A case study: ACSM data from Zurich

- ACSM data from measurements at Kaserne, a Nabel station in Zurich, in 2011 2012
- 4 factors (HOA, COA, BBOA, OOA) in winter season
- 5 factors (HOA, COA, BBOA, two OOA) in spring
- 100 constrained PMF runs for 4- and 5-factor models
- 100 x 2 random combinations of constraining parameters (a-values for HOA, COA and BBOA)
- Results of the 200 runs in one HDF5-file

1: criteria definition and calculation

2: criteria-based selected solutions Factor profiles and diurnal cycles of the "best" solutions winter data 9 solutions based on time series 43 var_COA_Paris var_factor_2 var_HOA_Paris 11 н correlation 55 0.10 var_factor_1 н 41 н 80 • 11 13 x10⁻³ fraction 57 0.08 fraction 60 0.06 5 40 0.04 3 20 0.02 4 0.00 0 20 60 40 60 80 100 20 40 80 100 BC / µg·m⁻³ 2 нд.т.⁻³ 3 var_BBOA_avg var_factor_3 н. 44 var_factor_4 . 0.10 . 43 0.20 2 0.08 fraction fraction 0.15 0.06 55 0.10 0.04 1. 0.05 0.02 - · EC_tr ---- factor_1_mean factor_2_mean — factor_3_mean — factor_4_mean 0.00 0.00 0 -- 0 20 40 60 80 100 100 20 40 60 80 10 10 0 111 115 115 115 115 116 117 117 119 22 22 22 22 22 22 22 23 22 hours

1: criteria definition and calculation

2: criteria-based selected solutions

1: criteria definition and calculation spring data Criteria distributions and thresholds **Primary factors Secondary factors** 30 SV-OOA criteria = 30 R-Pearson(HOA,EC_tr) COA criterion 25 distribution distribution 20 20 - $\max_{SOA} \left| \frac{f_{43}}{f_{44}} \right|$ 15 **-**10 10 -5 - $\min_{SOA} \left| \frac{f_{44}}{f_{44}} \right|,$ 0 0 0.2 0.3 0.5 0.50 0.55 0.1 0.4 0.6 0.40 0.45 0.60 criterion x 0.85 criterion x 0.5 R(SOA, NO3)30 40 exp. var. 60 (BBOA) R-Pearson(BBOA,EC wb) LV-OOA criteria = distribution distribution 30 20 20 max SOA 10 f_{43} 10 0 0 min SOA 0.2 0.4 0.6 0.8 0.15 0.20 0.25 0.30 $\frac{J_{44}}{R(SOA,SO4)}$ criterion criterion $\frac{hr[11] + hr[12] + hr[13]}{hr[9] + hr[10] + hr[14] + hr[15]}$ 4 OOA criterion = COA criterion = $\times \frac{1}{3}$ R(OOA, NH4)

2: criteria-based selected solutions

Factor profiles and diurnal cycles of the "best" solutions

spring data

Conclusion / outlook

- Hard and soft criteria can be combined to select PMF solutions that best represent the data.
- Ca. 10% or less belong to the group of the "best" solutions.
- A seasonal dependence of the criteria distribution needs to be investigated.