

Atmos. Chem. Phys., 16, 3207-3225, 2016
Atmos. Chem. Phys., $16,3207-3225,2016$
doi:10.5194/acp-16-3207-2016
(c) Author(s) 2016. CC Attribution 3.0 License. (c) (1)

New insights into $\mathrm{PM}_{2.5}$ chemical composition and sources in two

major cities in China during extreme haze events using aerosol

mass spectrometry

Miriam Elser ${ }^{1}$, Ru-Jin Huang ${ }^{1,2,5}$, Robert Wolf ${ }^{1}$, Jay G. Slowik ${ }^{1}$, Qiyuan Wang ${ }^{2}$, Francesco Canonaco ${ }^{1}$, Guohui Li^{2}, Carlo Bozzetti ${ }^{1}$, Kaspar R. Daellenbach ${ }^{1}$, Yu Huang ${ }^{2}$, Renjian Zhang ${ }^{3}$, Zhengqiang Li^{4}, Junji Cao^{2}, Urs Baltensperger ${ }^{1}$, Imad El-Haddad ${ }^{1}$, and André S. H. Prévôt ${ }^{1,2}$
${ }^{1}$ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
${ }^{2}$ State Key Laboratory of Loess and Quatemary Geology and Key Laboratory of Aerosol Chemistry and Physics,
Institute of Earth Environment, Chinese Academy of Sciences, 710075 Xi'an, China
${ }^{3}$ Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric
Physics, Chinese Academy of Sciences, Beijing, China
${ }^{4}$ State Environmental Protection Key Laboratory of Satellite Remote Sensing, Institute of Remote Sensing and
${ }^{5}$ Centre for Atmospheric and Marine Sciences, Xiamen Huaxia University, Xiamen 361024, China
Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn), Imad E1-Haddad (imad.el-haddad@psi.ch) and André S. H. Prévôt (andre.prevot@psi.ch)
Received: 2 October 2015 - Published in Atmos. Chem. Phys. Discuss.: 3 November 2015
Revised: 16 February 2016 - Accepted: 19 February 2016 - Published: 11 March 2016

Experimental

Others:
RDI, ACSM, ATOF-MS, Nephelometer, Lidar, SMPS, SP2, HONO, $\mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NOx}, \mathrm{O}_{3}, \mathrm{CO}_{2}$, Meteo parameters...
8 High-Vol \& 10 Mini-Vol samplers

Period	Start	End
Xi'an	13.12 .2013	06.01 .2014
Beijing	10.01 .2014	26.01 .2014

Instrumentation

HR-ToF-AMS
Aethalometer $(7-\lambda)$

PM2.5 Cyclone
TSP

HR-ToF AMS

(Williams et al., 2013)

PAUL SCHERRER INSTITUT CHIC
 Bulk PM2.5 chemical composition

 Chemistry

OA source apportionment

Positive Matrix Factorization (PMF; Paatero and Tapper, 1994)

Iterative algorithm that aims to the minimization of: $\quad Q=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{e_{i j}}{\sigma_{i j}}\right)^{2}$
Multilinear Engine (ME-2; Canonaco et al., 2013)
Constrain $\mathrm{f}_{\mathrm{j}}\left(\right.$ or $\left.\mathrm{g}_{\mathrm{j}}\right)$ with a-value approach:
$\mathrm{f}_{\mathrm{j}, \mathrm{sol}}=\mathrm{f}_{\mathrm{j}} \pm \mathrm{af}_{\mathrm{j}}$

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1

Step 1:

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1

Step 1:

Step 2- Establish criteria to chose best solutions:
This work:

1) Minimization of $m / z 60$ in HOA
2) Optimization of COA diurnals
3) Factor-tracer correlations (primary sources):
$>\mathrm{BC}_{t r}$ vs HOA
$>\mathrm{BC}_{\mathrm{wb}}$ vs BBOA
$>\mathrm{PAH}_{\text {fitted }}=\mathrm{a}^{*} \mathrm{BBOA}+\mathrm{b}^{*} \mathrm{CCOA}+\mathrm{c}^{*} \mathrm{HOA}$ vs $\mathrm{PAH}^{(1)}$

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1
Step 2 (1):
Step 2- Establish criteria to chose best solutions:
This work:

1) Minimization of $m / z 60$ in HOA
2) Optimization of COA diurnals
3) Factor-tracer correlations (primary sources):
$>\mathrm{BC}_{t r}$ vs HOA
$>\mathrm{BC}_{\mathrm{wb}}$ vs BBOA
$\Rightarrow \mathrm{PAH}_{\text {fitted }}=a^{*} \mathrm{BBOA}+\mathrm{b}^{*} \mathrm{CCOA}+\mathrm{c}^{*} \mathrm{HOA}$ vs $\mathrm{PAH}^{(1)}$

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1

Step 2 (2):

Accepted limits?

Cluster analysis
2) Optimization of COA diurnals: cluster analysis (k-means algorithm)

$\mathrm{m} / \mathrm{z} 44$ in COA spectra:
literature ${ }^{(1)}: 0.013 \pm 0.004 \%$
red cluster: $0.013 \pm 0.002 \%$
blue cluster: $0.026 \pm 0.008 \%$
purple cluster: $0.025 \pm 0.019 \%$
(1) He et al. (2010), Crippa et al. (2013) and Wolf (2014)
2) Optimization of COA diurnals: cluster analysis (k-means algorithm)

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1
Step 2 (2):
Step 2- Establish criteria to chose best solutions:
This work:

1) Minimization of $m / z 60$ in HOA
2) Optimization of COA diurnals
3) Factor-tracer correlations (primary sources):
$>\mathrm{BC}_{t r}$ vs HOA
$>\mathrm{BC}_{\mathrm{wb}}$ vs BBOA
$>\mathrm{PAH}_{\text {fitted }}=\mathrm{a}^{*} \mathrm{BBOA}+\mathrm{b}^{*} \mathrm{CCOA}+\mathrm{c}^{*} \mathrm{HOA}$ vs $\mathrm{PAH}^{(1)}$

Step 3- Consider average of all good solutions to get an estimation of your errors.
3) Factor-tracer correlations (primary sources):
(A) $\mathrm{PAH}_{\text {fitted }}(\mathrm{t})=\mathrm{a} * \mathrm{BBOA}(\mathrm{t})+\mathrm{b} * \mathrm{CCOA}(\mathrm{t})+\mathrm{c} * \mathrm{HOA}(\mathrm{t})$
(B) $\quad \mathrm{BC}_{\text {tr fitted }}(\mathrm{t})=\left(\mathrm{BC}_{\mathrm{tr}} / \mathrm{HOA}\right)_{\mathrm{av}} * \mathrm{HOA}(\mathrm{t})$

$$
\rightarrow S_{\text {ext }}=\frac{\text { Measured-Fitted }}{\text { Measured }} \rightarrow \begin{gathered}
\text { Minimize the error } \\
\left(\sigma_{\text {fext }}\right)
\end{gathered}
$$

(C) $\quad B C_{w b \text { fitted }}(\mathrm{t})=\left(\mathrm{BC} \mathrm{w}_{\mathrm{wb}} / \mathrm{BBOA}\right)_{\mathrm{av}} * \mathrm{BBOA}(\mathrm{t})$

Combine all errors:

$$
\sigma_{A L L}=\sqrt{\left(\sigma_{P A H}\right)^{2}+\left(\sigma_{B C_{t r}}\right)^{2}+\left(\sigma_{B C_{w b}}\right)^{2}}
$$

Step 1- Run all possible a-value combinations:
This work: a-value: 0 to 1 with steps of 0.1
Step 2 (3):
Step 2- Establish criteria to chose best solutions:
This work:

1) Minimization of $m / z 60$ in HOA
2) Optimization of COA diurnals
3) Factor-tracer correlations (primary sources):
$>\mathrm{BC}_{t r}$ vs HOA
$>\mathrm{BC}_{\mathrm{wb}}$ vs BBOA
$>\mathrm{PAH}_{\text {fitted }}=\mathrm{a} * \mathrm{BBOA}+\mathrm{b}^{*} \mathrm{CCOA}+\mathrm{c}^{*} \mathrm{HOA}$ vs $\mathrm{PAH}^{(1)}$

Step 3- Consider average of all good solutions

Step 3- Consider average of all good solutions
$>$ Best solution: $\boldsymbol{\sigma}_{\boldsymbol{A L L}} \min \rightarrow$ a-value $\mathrm{HOA}=0.9 \&$ a-value $\mathrm{COA}=0.6$
$>$ Modify OA input matrix within it's errors and see variability of solution:

$$
\begin{gathered}
50 \mathrm{ME}-2 \text { runs }^{(1)} \text { with: } \\
\mathbf{O A}_{\text {mod }}(\mathbf{i}, \mathbf{j})=\mathbf{O A}_{\mathbf{0}}(\mathbf{i}, \mathbf{j}) \pm \mathbf{2 0 A _ { \text { error } } (\mathbf { i } , \mathbf { j })} \\
\boldsymbol{\pi} \\
\begin{array}{c}
\text { Final accepted a-value } \\
\text { combinations }
\end{array}
\end{gathered}
$$

$>$ As sensitivity check:

$$
10 \mathrm{ME}-2 \text { runs }^{(1)} \text { with } \mathbf{O A}{ }_{\text {mod }}(\mathbf{i}, \mathbf{j})=\mathbf{O A}(\mathbf{i}, \mathbf{j}) \pm \mathbf{1 0} \mathbf{A}_{\text {error }}(\mathbf{i}, \mathbf{j})
$$

(1) Using a-value of 0.9 for HOA and 0.6 for COA

1) Importance of optimization of source apportionment
2) Importance of measuring PM2.5 fraction (specially during haze)
3) Characteristics of the haze events
$>$ Increase of SOA (OOA) and inorganic ions (mostly $\mathrm{SO}_{4} \& \mathrm{NO}_{3}$)
$>$ Growth of particles towards higher sizes ($\sim \mathbf{4 0 0} \mathbf{n m} \rightarrow 800 \mathrm{~nm}$)
$>$ Heterogeneous oxidation of SO_{2} favored at high RH (e.g. during haze)
4) PM2.5 sources in Xi'an and Beijing
$>$ PM2.5 dominated by emissions from:

- BBOA in Xi'an
- CCOA in Beijing

$>$ High PAH from major combustion sources

- PAH correlate very good with CCOA in Beijing but needs other sources in Xi’an
$>$ PMF runs with Input $=(\mathrm{OA} \mid \mathrm{PAH}) \rightarrow \mathrm{PAH}$ attributed to $\mathrm{BBOA}, \mathrm{CCOA}$ and HOA
$\Rightarrow \mathrm{PAH}_{\text {fitted }}=\mathrm{a} * \mathrm{BBOA}+\mathrm{b}^{*} \mathrm{CCOA}+\mathrm{c}^{*} \mathrm{HOA}$

PMF solutions with 4,5 and 6 factors

PMF solutions with 4,5 and 6 factors

Decreased m/z 44 in red cluster solution

(1) He et al. (2010), Crippa et al. (2013) and Wolf (2014)

$B C$ calculated as a linear combination of HOA, BBOA and CCOA

Diurnals AMS species and eBC with variability (P25-P75)

Diurnal trends of the OA sources and external tracers

Diurnal trends of OA sources with errors (st. dev. from all good a-values + daily variability (P25-P75))

Correlations OA sources vs external tracers

Correlations OA sources vs external tracers

R^{2}	Xi'an		Beijing		Overall
	Extreme haze	Not extreme Haze	Extreme haze	Not extreme Haze	
OOA-NH4	0.22	0.71	0.38	0.60	0.88
COA-C $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$	0.21	0.58	0.44	0.71	0.31
CCOA-PAH	0.57	0.59	0.96	0.96	0.62
BBOA- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	0.98	0.96	0.79	0.81	0.97
BBOA-BC ${ }_{\text {wb }}$	0.33	0.53	N.A.	N.A.	0.38
HOA-BC ${ }_{\text {tr }}$	0.61	0.61	N.A.	N.A.	0.61
Ratio (source/marker)	Xi'an		Beijing		Overall
	Extreme haze	Not extreme Haze	Extreme haze	Not extreme Haze	
OOA-NH4	0.99	1.08	0.67	0.76	0.97
COA-C $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$	60.21	144.01	125.54	197.79	96.35
CCOA-PAH	3.42	5.51	10.84	10.43	7.16
BBOA- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	51.02	53.98	28.75	21.68	50.60
BBOA-BC wb	10.82	4.91	N.A.	N.A.	7.31
HOA-BC ${ }_{\text {tr }}$	1.18	1.62	N.A.	N.A.	1.27

Time series of OA sources with

 standard deviation among all good avalue combinations (black shadow)

PSCF analysis

Xi'an extreme haze
Longitude (${ }^{\circ}$)

$80 \quad 90 \quad 100 \quad 110$

(20)

$\begin{array}{llll}80 & 90 & 100 & 110\end{array}$ Longitude (${ }^{\circ}$)

Xi'an not extreme haze

Longitude (${ }^{\circ}$)

Beijing not extreme haze
Longitude (${ }^{\circ}$)

+ All backtraj. $\begin{array}{ll}+ & \text { All backtraj. } \\ + \text { Selected backtraj }\end{array}$ + Selected backtra Measeruments

$\bigcirc 40$
 O 30

 - 5
 - 0.5

