Hyperfine splitting in μp and $\mu^{3} He^{+}$

CREMA collaboration

Hyperfine splitting in μp and $\mu^{3} He^{+}$

CREMA collaboration

Measure $\Delta E(2S - 2P)$ \rightarrow charge radii

Measure $\Delta E(HFS)$ \rightarrow magnetic radii - Muonic hydrogen (μ p)

- Muonic deuterium (μ D)
- Muonic helium ($\mu \, \mathrm{He}^+$)
- Hyperfine splitting in $\mu^{\,3}\mathrm{He^{+}}$
- Hyperfine splitting in μp

BVR47, P

Antognini

09.02.2016 – p. 1

Hyperfine splitting vs. 2S-2P spectroscopy

• The 2S-2P energy splitting (Lamb shift)

 $E_L^{\text{th}} = 206.0336(15) - 5.2275(10) \frac{R_E^2}{E} + 0.0332(20) \text{ meV}$

$$\begin{split} \Delta E_{\text{finite size}} &= \frac{2\pi Z\alpha}{3} |\phi(0)|^2 R_E^2 \\ R_E &= -\frac{6}{G_E(0)} \frac{dG_E}{dQ^2} \Big|_{Q^2=0} \\ R_E^2 &\approx \int d\vec{r} \, \rho_E(\vec{r}) r^2 \end{split}$$

TPE: Two photon exchange

• The hyperfine splitting $\Delta E_{HFS}^0 \sim (Z\alpha) \langle \vec{\mu}_{\mu} \cdot \vec{\mu}_N \rangle |\phi(0)|^2$ $\Delta E_{HFS}^{th} = 182.819(1) - 1.301 R_Z + 0.064(21) \text{ meV}$ $\Delta E_{finite size} = -2(Z\alpha) m_r \Delta E_{HFS}^0 R_Z$ $R_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa_p} - 1 \right)$ $R_Z = \int d^3 \vec{r} \, |\vec{r}| \int d^3 \vec{r'} \rho_E(\vec{r} - \vec{r'}) \rho_M(\vec{r'})$

Objectives and impact

Objectives and impact

Objectives and impact

A. Antognini

BVR47, PSI

09.02.2016 - p. 3

Two ways to the two-photon-exchange

2S-2P: Agreement HFS: First preliminary ChPT results A. Antognini BVR47, PSI 09.02.2016 – p. 4

Two ways to the two-photon-exchange

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

	μ p)	μ^{3} E	Ie ⁺	
	Magnitude	Uncertainty	Magnitude	Uncertainty	
$\Delta E_0^{ m HFS}$	182.443 meV	0.1×10^{-6}	1370.725 meV	$0.1 imes 10^{-6}$	
$\Delta_{ m QED}$	1.1×10^{-3}	1×10^{-6}	1.2×10^{-3}	1×10^{-6}	
$\Delta_{\rm weak+hVP}$	2×10^{-5}	2×10^{-6}			
Δ_{Zemach}	7.5×10^{-3}	7.5×10^{-5}	3.5×10^{-2}	2.2×10^{-4}	$\leftarrow G_E(Q^2), G_M(Q^2)$
$\Delta_{ m recoil}$	1.7×10^{-3}	10^{-6}	2×10^{-4}		$\leftarrow G_E, G_M, F_1, F_2$
$\Delta_{ m pol}$	4.6×10^{-4}	8×10^{-5}	$(3.5 \times 10^{-3})^*$	$(2.5 \times 10^{-4})^*$	$\leftarrow g_1(x,Q^2), g_2(x,Q^2)$

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

Principle of the HFS experiments

 μ^- stops in gas and forms a muonic atom

A laser pulse drives the hyperfine transition

Need a method to detect the occurred transition

Plot number of detected transitions versus the laser frequency

Principle of the μp **HFS experiment**

- μ^- of 10 MeV/c are detected \longrightarrow trigger the laser
 - μ^- stops in H₂ gas (500 mbar, 50 K) $\longrightarrow \mu p$ (F=0) formation
- Laser pulse: $\mu p(F=0) \longrightarrow \mu p(F=1)$
 - Collision: $\mu p(F=1) + H_2 \longrightarrow H_2 + \mu p(F=0) + E_{kin}$
 - Diffusion: the faster μp reach the target walls
- At the wall: μ^- transfer to high-Z atom $\longrightarrow (\mu Z)^*$ formation
 - $(\mu Z)^*$ de-excitation \rightarrow MeV X-rays, e⁻ and μ^- capture
 - Resonance: Number of X-rays/e⁻/capture signals after laser excitation versus laser frequency

m = -1

F=1

F=0

m=+1

Cross sections: thermalized vs. laser excited

A. Antognini BVR47, PSI 09.02.

Efficiencies and event rates

		Signal	Background	-
#1	Muon beam at 10 MeV/c with 5 mm diameter	600 /s	600 /s	πE5
#2	Anti-coincidence rejection	6×10^{-1}	6×10^{-1}	anti-coincidence
#3	\implies Laser and DAQ trigger rate	240 /s	240 /s	
#4	Stops in gas (after anti-rejection)	6×10^{-1}	7×10^{-1}	
#5	Overlap laser volume/ μ stop volume	2×10^{-1}		
#6	$\mu \mathrm{p}$ density decrease due to diffusion	3×10^{-1}	2×10^{-1}	locar: abort dalay
#7	μ^- decay prior to laser time	5×10^{-1}	5×10^{-1}	laser. short delay
#8	Laser excitation probability ($E = 0.6 \text{ mJ}$, $N = 400$)	9×10^{-2}		laser: large energy
#9	Fraction of μp with kinetic energy > 0.1 eV	4×10^{-1}		
#10	$\mu \mathrm{p}$ reaching the walls (diffusion + decay)	1.5×10^{-1}	2×10^{-2}	cryogenic cavity
#11	Detection efficiency for cascade/capture events	5×10^{-1}	5×10^{-1}	
#12	Multiplication of efficiencies	5.0×10^{-5}	7.3×10^{-4}	
#13	Event rate per hour on resonance	43	635	
#14	Time needed to see a 4σ effect over BG	5.5 h		
#15	Time needed for wavelength change	1 h	-	
#16	Number of points to be measured	170		$\pm 3\sigma$ theory uncertainty
#17	Beam time duration (70% up-time + setting up)	12 weeks		_

Principle of the $\mu^{3}He^{+}$ HFS experiment

- μ^- of 10 MeV/c are detected \longrightarrow trigger a laser
 - μ^- stop in ${}^3 ext{He}$ gas (50 mbar, 300 K) $\longrightarrow \mu^{\,3} ext{He}^+$
- Laser pulse: drives F=0 \rightarrow F=1 and F=1 \rightarrow F=0 transitions
 - \Rightarrow change of the avg. muon polarization
- Detect electron from muon decay
 - Decay asymmetry: $N_e(left)$ increaese, $N_e(right)$ decreaese
 - Resonance: $N_e(left) N_e(right)$ vs. laser frequency

$\mu^{3}\mathrm{He^{+}}$ resonance search

Laser requirements

Experiment	$\mu \mathrm{p} \ extsf{2S-2P}$ (2009) $\mu \mathrm{p} \ extsf{HFS}$		$\mu\mathrm{He^{+}}$ 2S-2P (2014)	$\mu^{3}\mathrm{He^{+}}\;\mathrm{HFS}$
Wavelength	6.0 $\mu { m m}$	6.7 $\mu \mathrm{m}$	840-960 nm	930 nm
Pulse energy	0.15 mJ	1.5 mJ	12-6 mJ	50 mJ
Avg. Rate	220 Hz	250 Hz	220 Hz	500 Hz
Bandwidth	300 MHz	$\lesssim 300 \text{ MHz}$	< 300 MHz	$\lesssim 500 \text{ MHz}$
Delay	< 1.2	< 1.2	< 1.2	< 1.2
Pulse energy in cavity	0.1 mJ	0.6 mJ	3.5 mJ	40 mJ
Avg. number of reflections	1000	400	1000	1500

$$\begin{pmatrix} \underline{\Delta\nu} \\ \nu \end{pmatrix}_{\mu p} = 5 \times 10^{-6} \quad \text{and} \quad \left(\frac{\Delta\nu}{\nu} \right)_{\mu \text{ He}^+} = 7 \times 10^{-6}$$

$$\Delta\nu_{\mu p} = 0.22 \text{ GHz} \quad \text{and} \quad \Delta\nu_{\mu \text{ He}^+} = 2.2 \text{ GHz}.$$

Narrow lines:

 \Rightarrow Difficult to find the line

 \Rightarrow Sub-ppm accuracy require little statistics

The laser systems

Needs to develop cutting-edge thin-disk laser technologies

Needs to develop cutting-edge parametric down-conversion stages

The multi-pass cavities

 $N = \frac{1}{1 - L_{\rm tot}}$

$$L_{\text{tot}} = L_{\text{ref}} + L_{\text{hole}} + L_{\text{scat}} + L_{\text{defect}}$$

	N	$L_{ m tot}$	λ	challenge
$\mu \mathrm{p}$	500	2×10^{-3}	6.7 μ m	cryogenics
$\mu^{3} \mathrm{He^{+}}$	1500	6×10^{-4}	930 nm	50 mJ pulses

a)

b)

c)

Plan

Detailed simulation of both experiments

- Simulations of cavities, excitation probabilities, diffusion, detection system, anti-coincidence

- Needs measured beam parameters, electron contamination...

Development needed

- thin-disk laser
 - \rightarrow energy $\times 5$, shorter pulses, single frequency
- parametric down-conversion stages
 - 500 Hz, bandwidth < 300 MHz, TEM00-mode, tunability, mJ energy (MISURG)
- multi-pass cavities

	2016		2017			20	18			20	19	
Funding, laser hut refurbishment									1			
Simulations												
Cavities development												
Develop the thin-disk laser												
Develop parametric down-conversion												
Detectors development												
Setup realization, first resonance search												
Beam line test		?	??	?	?	?	?	?	?	?	?	?

Beam time request for 2016

CREMA collaboration

F. Biraben, P. Indelicato, L. Julien, F. Nez	Labor. Kastler Brossel, Paris
T.W. Hänsch, R. Pohl	MPQ, Garching, Germany
F.D. Amaro, L.M.P. Fernandes, C.M.B. Monteiro, J.M.F. dos Santos	Uni Coimbra, Portugal
J.F.C.A. Veloso	Uni Aveiro, Portugal
M. Abdou Ahmed, T. Graf,	IFSW, Uni Stuttgart
A. Antognini, M. Hildebrandt, K. Kirch, A. Knecht F. Kottmann, E. Rapisarda, K. Schuhmann, D. Taqqu	ETH & PSI, Switzerland
YW. Liu	N.T.H. Uni, Hsinchu, Taiwan
P. Amaro, J. Machado, J.P. Santos	Uni Lisbon, Portugal

International Workshop on **Hadronic Contributions to New Physics Searches** (HC2NP 2016)

Puerto de la Cruz, Tenerife, Spain

September 26–30, 2016

Organizers: Jorge Martin Camalich Vladimir Pascalutsa

09.02.2016 - p. 19

Workshop Secretary: Myriam Gonzalez de Aledo

BVR47, PSI

1st Circular

Along with the direct searches of new particles at the LHC, low-energy phenomenology offers many complementary ways to search for physics beyond the Standard Model. The low-energy searches, however, are often hindered by the insufficiently precise knowledge of hadronic contributions. The purpose of this meeting is to cross-examine the empirical and theoretical progress in the understanding of these contributions in the context of various searches of new physics. The scope is limited to systematically improvable calculations in QCD (e.g., pQCD, lattice QCD, EFTs) and model-independent dispersive frameworks. This time we plan to focus on the high-precision analyses in the following SUBTOPICS:

- $(g-2)_{\mu}$: hadronic vacuum polarization, light-by-light scattering
- Flavor transitions of light hadrons and interplay with *B*-decay anomalies
- Hadronic inputs for direct searches of Dark Matter: σ terms
- Proton radius puzzle: muonic hydrogen Lamb shift and hyperfine structure

THE VENUE for this meeting, seen in the picture below (the red building, not the volcano!), is located in Tenerife — a gorgeous Canary Island. The hotel will allow us to host up to 50 participants at very moderate accommodation rates and conference fees.

A. Antognini

