

Wir schaffen Wissen – heute für morgen

Alexey Stoykov, Jean-Baptiste Mosset, Malte Hildebrandt

- Use of Silicon Photomultipliers in ZnS:⁶LiF scintillation neutron detectors
- 1. Options for the HEIMDAL NPD detector

high light yield (160'000 photons/neutron)

> non-transparent

- light collection is poor and non-uniform
- the number of detected photons is small, its distribution is broad
- > long emission time (25% photons in 1 μ s ... 60% in 10 μ s)
 - to avoid multiple triggers an artificial dead time is necessary
 - short dead times (down to 1µs) are possible at the expense of rejecting weak signals → reduced trigger efficiency

SiPM

- single-photon counting capability
- > high photon detection efficiency (PDE ~ 40%)
- > compact, robust, non-expensive
- Iow operation voltage
- insensitive to magnetic fields
- high rate of dark counts (thermal generation)
 - $\sim 100 \text{ kHz/mm}^2$ at RT, increases with T
 - increases with accumulated radiation damage
 - weak signals can not be extracted from the background of dark counts → sets additional limit on trigger efficiency

High light collection is essential – requires special pixel design !!!

- optimized light collection with ø0.25mm WLS-fibers uniformly distributed over scintillation volume
- \triangleright one pixel is readout by a 1mm² active area SiPM
- no problems in achieving high neutron absorption probability (here 80% at 1Å)

Neutron events are detected as an increase of the density of the single-cell SiPM signals

SA: amplified single-cell SiPM signals (detected photons, dark counts, afterpulses, cross-talk)
SD: standardized single-cell SiPM signals (detected photons, dark counts, afterpulses)
SF: neutron event + multicount events (number of detected photons above threshold – thr)
SN: neutron event (multicount events removed by setting an artificial dead-time – b-time)

Neutron detection efficiency at 1Å (5Å), %	68 (85)	60 (75)	
• absorption probability at 1Å (5Å), %	80 (100)		
• trigger Efficiency ^(a) , %	85	75	
Background count rate, Hz	< 10-3		
Gamma-sensitivity (at 1.3 MeV)	< 10-7		
Multi-count ratio	< 10-3		
Dead time, µs	10	1	
Sustainable neutron count rate (n-max), kHz ^(b)	20	200	
Sustainable SiPM dark count rate (n_0 -max), MHz ^(c)	4	4	

- a) to fulfill BGM-conditions at chosen dead-time
- b) to ensure event loss $\leq 20\%$; verified up to n-max = 40 kHz (dead-time $\approx 5\mu$ s)
- c) SiPM dark count rate up to which: E constant, B ok

BGM vs. Trigger Efficiency (b-time = $10\mu s$)

- strong dependence of BGM-parameters on tr-eff (high power index q)
- factor of 10 improvement by only 2% reduction of tr-eff

BGM-limit on Trigger Efficiency (effect of b-time)

> For high-rate applications (neutron count rates up to 100 kHz) **sh-time** can be lowered to $0.25\mu s$ (**b-time** = 1 μs). The required reduction of the trigger efficiency is about **10%**.

Sustainable dark count rate of the SiPM (n_0 -max) – dark count rate up to which: tr-eff = const, B-condition fulfilled n_0 -max = 4 MHz at b-time = 10µs (1µs), tr-eff = 85% (75%)

BGM-limit on Trigger Efficiency (effect of N_{phe})

PAUL SCHERRER INSTITU

 N_{phe} – number of detected photons (photoelectrons) in 10µs

 n_0 -max = 6.5 MHz ... (at tr-eff = 75%) ... n_0 -max = 0.9 MHz

Reduction of N_{phe} by a factor of 2 leads to only 5% reduction of the maximum possible trigger efficiency, but to a factor of 7 reduction of n_0 -max and, accordingly, the SiPM lifetime.

SiPM lifetime

Detector operation time during which the dark count rate of the SiPM (n_0) , increasing as a result of radiation damage, reaches its sustainable value n_0 -max.

SiPM lifetime depends on:

- operation temperature (T)
- blocking time (b-time)
- trigger efficiency (tr-eff)
- **B**-condition

Example of POLDI (1.3 x 1.3 mm² active area SiPM) – preliminary estimate:

- for non-irradiated device: $n_0 = 100 \text{ kHz}$ at 25 °C (1 MHz at 50 °C)
- n_0 increase with irradiation: ≤ 170 kHz/year at 25 °C (≤ 850 kHz/year at 50 °C)

T, ⁰C	b-time, μs	tr-eff, %	<mark>B</mark> , Hz	n _o -max, MHz	SiPM lifetime, years
25	10 (1)	85 (75)	10-3	4	≥ 23
50	•••	•••		•••	≥ 3.5
25	10 (1)	80 (70)	10-3	7 (6)	≥ 40
50		•••		•••	≥ 6

- keeping the detector at temperatures below 30 °C is advisable
- lowering tr-eff by 5% increases the lifetime 1.7 times

Maximum true neutron count rate up to which:

- the detector performance is stable
- measured vs. true count rate follows the appropriate dead-time model
- dead-time related count losses $\leq 20\%$

- > n-max = 40 kHz at b-time = 4 μ s (to be verified down to b-time = 1 μ s)
- offset between the set (4 µs) and the measured values (5.8 µs) of the dead time to be verified

- ➢ high light collection is essential requires special pixel design
- high neutron detection efficiency (comparable with Helium-3 detectors)
- high count rate capability (expected up to 100 kHz)
- > low gamma-sensitivity ($\leq 10^{-7}$)
- SiPM dark count rate \mathbf{n}_0 (100 kHz/mm² at RT; increases with accumulated radiation damage) should not exceed its sustainable value \mathbf{n}_0 -max (typically 4 10 MHz). Small area SiPMs (1mm²) should be preferably used.

- 1D spatial resolution, arrangement in large panels without gaps
- channel pitch = 2.5mm, length = 200mm, absorption depth = 2.8mm
- channels produced and assembled separately (exchangeable)
- signals from each channel are converted and processed independently (maximum possible count rate capability)
- 1mm² active area SiPMs are used (longest possible ``life-time`` in radiation environment; > 10 years at POLDI)

2D detector – HEIMDAL NPD

Parameter	request	SiPMs, no coding	SiPMs, XY(16x16)
Total area, m ²	4	00	0 0
Radius / Height, m	1.5 / 1.0	 high cost of SiPMs 	 low cost of SiPMs
Design	2D, gapless	highly-integrated dedicated electronics	00
Pixel size, mm	3 x 10		 count-rate capability
Total number of pixels	~ 140'000	• count-rate conditions	to be confirmed (additional limit on
Wavelength range, Å	1 – 10	reliably fulfilled	XY resolving time)
Max. overall count rate, kHz/cm ²	10	150 ^(a)	10 (a,b)
Max. count rate on spot, kHz/cm ²	100 ?	150 (a)	100 (c)
Efficiency at 1Å / 5Å / 10Å, %	50 / 75 / 100	60 / 75 / 75	60 / 75 / 75
Max. time resolution (σ), μ s	100 (40) ?	10 (d)	10 ^(d)
Cost, kEuro	4'000 (e)	1'100 - 2'200 ^(f)	140-280 ^(f)

- (a) requires \mathbf{n} -max = 50kHz per readout channel (feasible)
- (b) requires XY resolving time Δ_{X-Y} = 300ns (feasibility to be verified)
- (c) requires **n-max** = 30kHz per readout channel (ok);

at Δ_{X-Y} = 300ns max. affordable spot size = 5x5 pixels (request ?)

- (d) uncertainty of neutron travel time (intrinsic time-res); electronic time-res is much lower.
- (e) full detector cost including mechanics
- (f) only SiPMs (8 16 euro per 1x1mm² SiPM)

PAUL SCHERRER INSTITUT

pixel V1 – fist tests

- for the first try quite acceptable performance
- light collection needs to be improved by a factor of ≥ 2
- potential for the optimization is present

detector head with 256 pixels readout by 32 SiPMs (1x1 mm²)

42.7

16.8

detector head with 256 pixels readout by 32 SiPMs (1x1 mm²)

- 2D large area detectors with gapless design and pixel dimensions down to 2.5 x 5mm seem to be feasible
- XY coding allows to keep the number of photosensors / readout electronic channels reasonably small
 - requirement on max. overall count rate sets additional limit on the XY-coincidence resolving time Δ_{X-Y}
- both SiPMs and MaPMTs can be used as photosensors
 - with SiPMs one gets better performance at lower price, but in hard radiation environment MaPMTs should be preferred

Input parameters:

PAUL SCHERRER INSTITU

- max. overall count rate at "uniform" illumination 3kHz / pixel (HEIMDAL NPD)
- XY-matrix dimension M
- max. event loss due to rejection of simultaneous "diagonal" events -20%

	M = 32	M = 16	M = 8
Total number of pixels	1024	256	64
Total number of "diagonal" pixels $(M^2 - 2M + 1)$	961	225	48
Max. rate of "diagonal" events, kHz	2880	675	144
Required X-Y coincidence resolving time (Δ_{X-Y}), ns	70 ^(a)	300 ^(b)	1400
Use of $\approx 1 \text{mm}^2$ SiPMs possible (considering light collection)	no	yes	yes
Use of MaPMTs possible (considering form-factor, price)	yes	yes	no

(a) most probably not feasible (to be verified)

(b) feasibility to be verified

At <u>spot illumination</u> the total count rate in spot should not exceed the maximum count rate of "diagonal" events in the Matrix at uniform illumination **!!!**

Thermal neutron (1 - 100 meV)

backup slides

 $E \text{ [meV]} = 81.82 / \lambda^2 \text{ [Å]}$ λ [Å] = 9.045 / E^{0.5} [meV] $v [m/s] = 3956 / \lambda [Å]$

E, meV	λ, Å	v, m/s	$\Delta t(1 \text{cm}), \mu \text{s}$
81.8	1.0	3956	2.5
25.2	1.8	2197	4.5
2.3	6.0	659	15.7

 $\Delta t(1 \text{cm})$ – travel time in 1cm

Detection

PAUL SCHERRER INSTITU

 $^{3}\text{He} + ^{1}\text{n} \rightarrow ^{3}\text{H} + ^{1}\text{p} + 0.76 \text{ MeV}, \quad \sigma = 5333 \cdot \lambda / 1.8 \text{ [barn]}$ $^{6}\text{Li} + ^{1}\text{n} \rightarrow ^{3}\text{H} + ^{4}\text{He} + 4.79 \text{ MeV}, \quad \sigma = 940 \cdot \lambda / 1.8 \text{ [barn]}$

Interaction probability

 $\varepsilon = 1 - \exp(-N \cdot \sigma \cdot d)$ $N [cm^{-3}]$ – density of absorbing atoms

- σ [barn] absorption cross-section
- d detector thickness

Density of absorbing atoms: ³He: $2.7 \cdot 10^{19} \text{ cm}^{-3} \cdot \text{atm}^{-1}$ ND2:1 scint: $1.4 \cdot 10^{22}$ cm⁻³

Attenuation length at 1Å ³He (1 atm): 12 cm: 0.13 cm ND2:1

PAUL SCHERRER INSTITUT

ZnS:⁶LiF scintillator

Neutron detection screens from

Scintacor (http://www.scintacor.com)

	ND4:1	ND2:1	
Mass ratio ZnS:6LiF	4:1 2:1		
Density, g/cm ³	2.2	2.2	
⁶ Li atoms, 10 ²² cm ⁻³	1.0	1.4	
Thickness, mm	0.45, 0.25		
Emission max., nm	450		
Photons per neutron	160000		
Transparency	opaque		

- bright (+)
- non-transparent (-)
- usable thickness ≤ 0.5 mm (-)
- scintillation process slow (-)

ND scintillator luminescence in response to neutrons (from E.S.Kuzmin et.al., Journal of Neutron Research 10 (2002) 31)

Ampl	191	230	88	50	25	6	1.2
τ, μs	0.022	0.074	0.208	0.88	4.3	18.1	87.7

