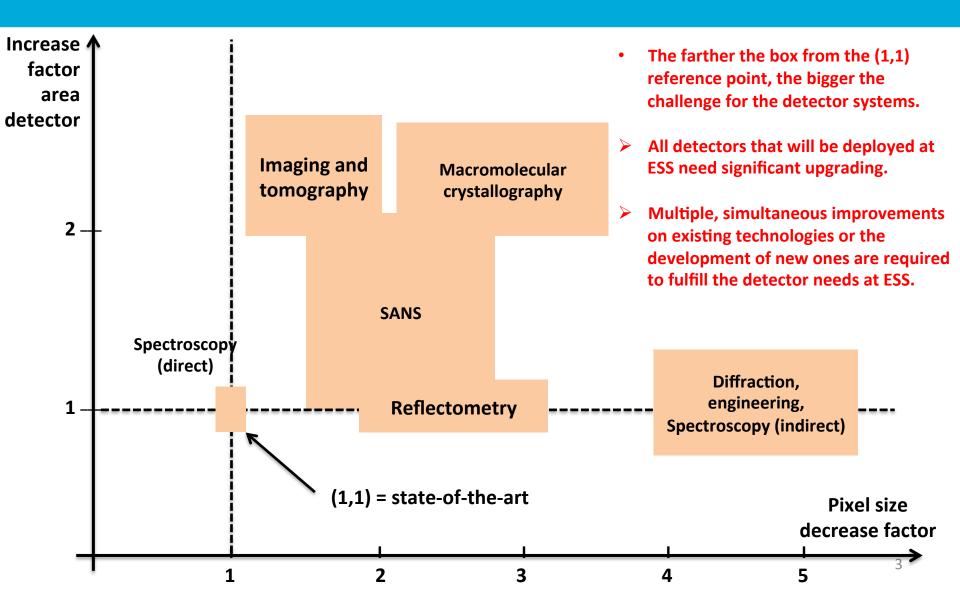


Diffraction detectors for ESS: challenges and strategy

Irina Stefanescu, Richard Hall-Wilton ESS Detector Group

Goals and challenges

2


ESS goal: build a facility capable to provide the most intense neutron beam world-wide that will be use to:

- → Measure very small samples, investigate kinetics
- → Perform fast measurements
- → Combine multiple methods in one instrument (e.g., PD+SANS+NI)
- → etc.
- ➔ A large number of new components (including detectors) must be developed.

Goals	Implications for detectors
Small samples	Small pixel sizes, large area, low background
Fast measurements	Fast detector response, readout electronics, DAQ
Multiple methods in one instrument	Several types of detectors must be integrated

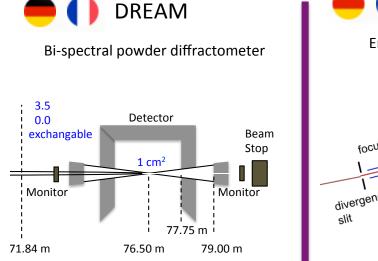
Detectors for ESS: sky is the limit

Detectors for ESS: strategy

Instrument class	Instrument sub- class	Instrument	Key requirements for detectors	Preferred detector technology	Ongoing developments (funding source)	
Large-scale	Small Angle	SKADI	Pixel size, count-rate	Scintillators	SonDe (EU SonDe)	
structures	Scattering	Loki		¹⁰ B-based	BandGEM	
	Reflectometry	Freia	Pixel size, count-rate	¹⁰ B-based	MultiBlade (EU BrightnESS)	
		Estia				
Diffraction	Powder	DREAM	Pixel size, count-rate	¹⁰ B-based	Jalousie	
	Diffraction	Heimdal		Scintillators		
	Single-crystal	MAGIC	Pixel size, count-rate	¹⁰ B-based	Jalousie	
	diffraction	NMX	Pixel size, large area	Gd-based	GdGEM uTPC (EU BrightnESS)	
Engineering	Strain scanning	BEER	Pixel size, count-rate	¹⁰ B-based	AmCLD, A1CLD	
	Imaging and tomography	Odin	Pixel size	Scintillators, MCP, wire chambers		
Spectroscopy	Direct geometry	C-SPEC	Large area	¹⁰ B-based	MultiGrid (EU BrightnESS)	
		T-Rex	(³ He-gas unaffordable)			
		VOR				
	Indirect geometry	BIFROST		³ He-based		
		MIRACLES				
		VESPA				

Key requirement for the ESS diffractometers

• Absolutely key to be clear about requirements for the design.

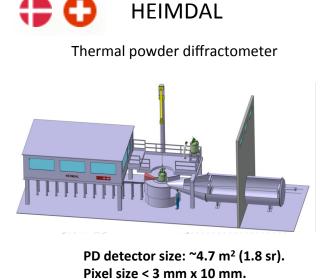

Instrument	Position	Area	No of	Integrated flux on	∆d/d (90°)	Detector technology	
	resolution (H x V)	detector	detector pixels	sample, HI mode (n/s/cm ²)		Comments	Options
DREAM	4 mm x 4 mm	6.2 sr (9.7 m²)	6*10 ⁵	3.4*10 ⁸ (calculated)	0.006	³ He tubes ruled out by the position resolution requirement. Rate capability of current technologies could be a challenge.	Scintillators, ¹⁰ B-based gas detectors
HEIMDAL	< 3 mm x 10 mm	1.8 sr (4.7 m²)	1.5*10 ⁵	2*10 ⁹ (calculated)	0.01		
BEER	< 2 mm x 5 mm	1 sr (4 m²)	4*10 ⁵	10 ⁹ (calculated)	0.01		
							¹⁰ B-based gas detectors
WISH@ISIS	8 mm x 8 mm	2.8 sr (13.8 m²)	2.1*10 ⁵	1.1*10 ⁸ (experimental)	0.005	³ He tubes	
IMAT@ISIS	4 mm x 100 mm	1 sr (4 m²)	104	10 ⁷ (calculated)	0.7	ZnS-based scintillators, crossed WLS fibers under construction	

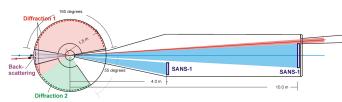
→ see Nigel's talk

Diffraction detectors for ESS

EUROPEAN SPALLATION SOURCE

PD detector size: ~9.7 m² (6.2 sr). Pixel size: 4 mm x 4 mm.


Preliminary drawing for the DREAM sample area.


W. Schweika et al., ESS Instrument Construction Proposal DREAM (POWHOW), 2014.

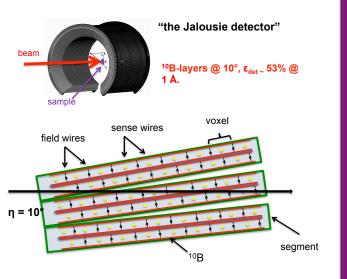
BEER Engineering diffractometer detectors + radial collimators SANS focusing guide divergence PD detector size: 4 m² (1 sr). Pixel size: < 2 mm x 5 mm.

Preliminary drawing for the BEER sample area.

A. Schreyer et al., ESS Instrument Construction Proposal BEER, 2014.

Preliminary drawing for the HEIMDAL sample area.

M. Christensen et al., ESS Instrument Construction Proposal HEIMDAL, 2014.


Diffraction detectors for ESS

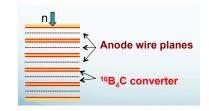
EUROPEAN SPALLATION SOURCE

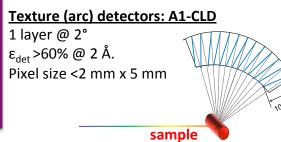
🛑 🌓 DREAM

The Jalousie detector concept was designed by CDT Heidelberg for the POWTEX diffractometers at FRM2.

The same detector technology will be used by the MAGIC – XSD @ ESS.

M. Henske et al., The ¹⁰B-based Jalousie neutron detector – An alternative for ³He-filled position sensitive counter tubes, NIMA 686 (2012) 151.




BEER

The Am-CLD and A1-CLD detector concepts were developed by the HZG/Denex collaboration in the framework of the InKind contribution to the ESS design update phase (2011-2014).

Powder and strain detectors: AmCLD

15 layers @ 90° ε_{det} >60% @ 2 Å. Pixel size <2 mm x 5 mm

HEII

HEIMDAL

 \rightarrow The instrument team favors the scintillator technology.

→ The ESS DG supports the intention of the Heimdal instrument team and welcomes the use of scintillator detectors in the ESS diffraction instrument suite.

→ The ability of the two detection technologies to work together, thereby mitigating the limitations of a single technology, is highly beneficial.

Risks

Instrument	Те	chnological and engineering risks	Schedule risks		
BEER, DREAM, MAGIC	low	 Detectors based on MWPC, which is a mature technology. Several laboratories are able to provide large quantities of high-quality ¹⁰B-coatings at reasonable prices. Validity of the BEER detector concepts was demonstrated and the first detector prototypes realized in a previous R&D project (2011-2014). A detector very similar to the DREAM detector is under construction for the POWTEX diffractometer at FRM2. Detectors will be built by trusted industrial partners that already provided a number of detectors for use at instruments operational at existing neutron scattering facilities. The detectors were designs by the same scientists who will built them. Issues related to the handing over the technology between the designers and manufacturers are avoided. 	medium	 Delayed start of the project due to delay in funding. Both companies consists of small teams of people that performs a very specialized type of work. There is a risk that unique workforce resources become unavailable when they are needed. For DREAM (and MAGIC), any delays in the delivery of the POWTEX detector could lead to delays in starting the production of the components for the DREAM detector. 	
HEIMDAL	medium	 Some R&D work must be done in order to have a mature design that meets the requirements, assuming that one starts with an existing module. 	high	• Due to the delay in deciding upon the technology, the detectors are subject to schedule risk.	

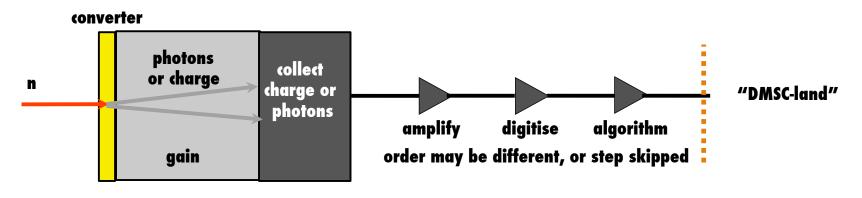
→ Today is about starting to reduce the risks by understanding the options

SANS detectors for Heimdal and BEER

Instrument	Position	Area detector	Integrated flux on	λ-range (Å)	Detector technology		
	resolution (H x V)		sample, (n/s/cm²)		Comments	Options	
Heimdal, SANS	5 mm x 5 mm	1 m x 1 m 3 x 1 m x 0.5 m	~10 ⁶ (calculated)	4 - 12	³ He tubes ruled out by the	Scintillators, ¹⁰ B-based MWPCs	
BEER, SANS	5 mm x 5 mm	1 m x 1 m	~10 ⁷ (calculated)	4.7 - 6.3	position resolution requirement.		
SKADI	3 mm x 3 mm	1 m x 1 m	~10 ⁹ (calculated)	4.5 - 40	Scintillators R&D ongoing under JCNS lead		
Loki (low-angle)	3 mm x 3 mm	~1 m²	~10 ⁹ (calculated)	2 - 12	BandGEM R&D ongoing in Milan		
D22@ILL	8 mm x 8 mm	1 m x 1 m	~10 ⁸ (experimental)	4.5 - 40	³ He tubes		
NGB30m@NIST	5 mm x 5 mm	0.64 m x 0.64 m	10 ⁸ (experimental)	5 - 20	ORDELA MWPC (³ He)		
KWS1@FRM2	5.25 mm x 5.25 mm	0.64 m x 0.64 m	10 ⁸ (experimental)	> 4.7	Anger cameras		

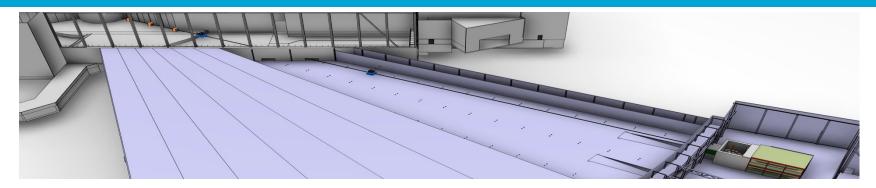
→ Decision on the detector technology for the SANS add-on can be made later; several options will be available.

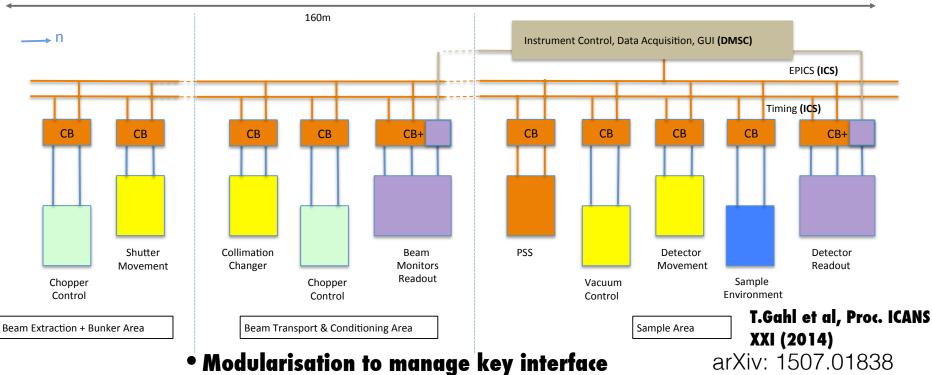
➔ See Giuseppe's talk on Loki


- The requirements for the powder diffraction detectors for ESS have demanding performance criteria which go beyond the state-of-the art limits.
- ESS diffraction instruments DREAM and BEER will employ ¹⁰B-based detectors for the powder and texture studies, one of the very few technologies that can fulfill the challenging requirements in terms of pixel size, count-rate capability and detector area.
- We support using the scintillator technology for the Heimdal powder diffraction detectors and hope that a decision in that direction will be made at this meeting.
- The decision on the detector technology for the SANS add-on can be taken later. Several technological options are expected to become available in the next year or so.
- The instrument projects must enter the design phase with great forward momentum in order to meet the deadlines and budget.

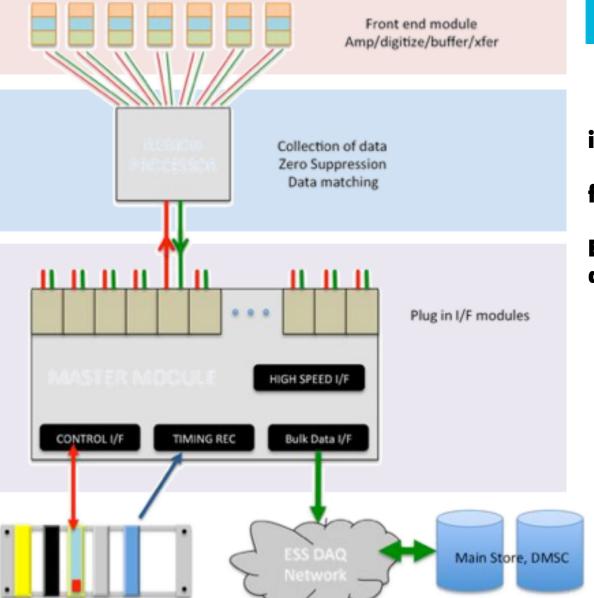
Neutron Detectors

Efficient neutron converters a key component for neutron detectors

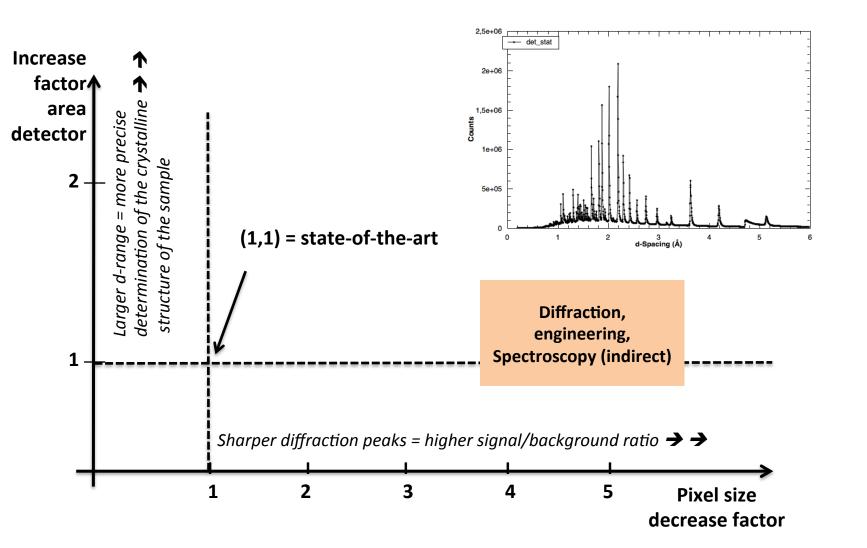

"Converter" "Detector" "Electronics"



Modular Instrument Control Concept


EUROPEAN SPALLATION SOURCE

Modularisation for Detector Electronics


- Modularisation to manage key interface
- Single in-kind partner (STFC, UK) for backend readout
- Example of synergy with existing European expertise to reduce developments needed by ESS
- Adapting rather than developing

SPALLATION SOURCE

14

Diffraction detectors for ESS

