

Atomic Parity Violation in muonic atoms Feasibility of a 2S1S parity violation experiment around Z=30

Frederik Wauters

Revisit PV for $Z \approx 30 \rightarrow$ Why $Z \approx 30$?

TABLE II. Decay rates for various transitions.^a

PSI Workshop, October 2016

<u>This Talk</u>: Revisit PV for $Z \approx 30$

- 1. Can we see the 2s1s?
- 2. Can we get the statistics for a PV 2s1s experiment?

4p	4d
3p 284 keV	3d 283 ke\

JGU Progress in HPGe technology

JG MC background estimation from the cascade

the 'ideal' singles spectrum

JG MC background estimation from the cascade

the 'ideal' singles spectrum

HOWTO suppress the BG with a factor > 20

JGU Nov 2015 TestBeam

Prompt Zn Spectrum

From ratio between 3P2S / other lines, Fribourg measurement on Fe:

2S population =
$$\frac{B.R.(3P1S)}{N.R.(2P1S)}$$
*4 = 6(1) %

From Fe data (Hartmann et al.)

JGU Detector performance

PSI Workshop, October 2016

JG Background > 2.2 MeV

Cut: Michel electron after 50-100 ns

- Very clean prompt window. No Bremsstrahlung and nuclear capture products
- Can use electron to get muon polarization
- Loose 93 % events!

PSI Workshop, October 2016

How much background reduction can we achieve in the ROI?

1. Practice on 2P1S : broad cut

How much background reduction can we achieve in the ROI?

1. Practice on 2P1S

(n>2)P1S X-rays suppressed by factor 8 or more

How much background reduction can we achieve in the ROI?

- 1. Practice on 2P1S : broad cut
- 2. Targeted 2P feeding cut

How much background reduction can we achieve in the ROI?

- 1. Practice on 2P1S : broad cut
- 2. Targeted 2P feeding cut
- 3. Targeted 2S feeding cut

Energy Ge1 Versus Energy Ge2, time coincidence, Vs Muon Tme (Good Ge hits + muon PP) yx projection

- 1. Wide \rightarrow Narrow coincidence window: Eff. loss of < 0.5 (From 2P1S)
- Wide →Narrow coincidence window: Background in ROI goes down by a factor of 10

JG Background suppression

Total BG suppression

Prompt:

Non-Prompt

- Factor 3 from Compton shield
- Factor 8 x 10/2 from X-ray coincidences
 → S/B of 2S1S > 1
- Delayed electron (but efficiency loss!)
- Scales with timing resolution HPGe

0.05(From MC) * 8 * 5 = 2 S/B for 2S1S should now be O(1) or better

JG Background suppression

Total BG suppression

Prompt:

- Factor 3 from Compton shield
- Factor 8 x 10/2 from X-ray coincidences

Non-Prompt

- Delayed electron (but efficiency loss!)
- Scales with timing resolution HPGe >50 ns \rightarrow 10 ns \rightarrow ...

Testbeam October 2016: 10 ns FWHM from SIS3316, out of the box

0000000000

01010 0101010

A METRODO

PSI Workshop, October 2016

Where is the 2S1S?

Energy Ge1 Versus Energy Ge2, time coincidence, Vs Muon Tme (Good Ge hits + muon PP) yx projection

I expect < 1 count after all cuts (0.6 in most optimistic case) Background in ROI = 0.26 counts/keV

Check = Expect ~ 3000 counts in 2P1S after all cuts, I see 2600 2P1S behaves as expected

PSI Workshop, October 2016

JG<mark>U</mark> Scaling up

Next Step: Observing 2S1S:

- Current S/B 1-2
- We can still improve
 - Factor 3 from Compton shielding
 - Factor of 5(?) from timing
- \rightarrow One week at 50 kHz μ^{-}
- \rightarrow 6 high-efficiency HPGe detectors @ 20 cm
- \rightarrow 250(20) Counts in 2S1S after cuts
- \rightarrow 6 10⁶ neutrons/cm²

From this we would learn:

- See the 2S1S
- Establish S/B
- Establish Branching Ration

Next Step: Observing 2S1S:

- Current S/B 1-2
- We can still improve
 - Factor 3 from Compton shielding

feasible

- Factor of 5(?) from timing
- \rightarrow One week at 50 kHz μ^{-}
- \rightarrow 6 high-efficiency HPGe detectors (
- \rightarrow 250(20) Counts in 2S1S after cuts
- \rightarrow 6 10⁶ neutrons/cm²

From this we would learn:

- See the 2S1S
- Establish S/B
- Establish Branching Ration

JG U Scaling up

Next Step: Observing 2S1S:

- Current S/B 1-2
- We can still improve
 - Factor 3 from Compton shielding

feasible

- Factor of 5(?) from timing
- $\rightarrow~$ One week at 50 kHz $\mu^{\scriptscriptstyle -}$
- \rightarrow 6 high-efficiency HPGe detectors (
- → 250(20) Counts in 2S1S after cuts
- \rightarrow 6 10⁶ neutrons/cm²

From this we would learn:

- See the 2S1S
- Establish S/B
- Establish Branching Ration

JG Scaling up, estimating some numbers

- 1. Observing 2P 1S:
- \rightarrow One week at 50 kHz μ^{-}
- \rightarrow 6 high-efficiency HPGe detectors @ 20 cm

feasible

- \rightarrow 800 Counts in 2S1S after cuts
- \rightarrow 6 10⁶ neutrons/cm²

- 2. Observing 2P 1S:
- $\rightarrow~$ 100 days at 100 kHz $\mu^{\rm -}$
- \rightarrow 50 % solid angle for HPGe
- \rightarrow 8 10⁻⁴ statistical error on 2S1S = O(PV)
- → 3.0 10⁸ neutrons/cm²

μ detectors

(here the MiniBall detectors act as a generic placeholder)

e- uelecio s

JG Scaling up, estimating some numbers

- 1. Observing 2P 1S:
- \rightarrow One week at 50 kHz μ^{-}
- → 6 high-efficiency HPGe detectors @ 20 cm

feasible

- \rightarrow 800 Counts in 2S1S after cuts
- \rightarrow 6 10⁶ neutrons/cm²

- 2. Observing 2P 1S:
- $\rightarrow~$ 100 days at 100 kHz $\mu^{\rm -}$
- \rightarrow 50 % solid angle for HPGe
- \rightarrow 8 10⁻⁴ statistical error on 2S1S = O(PV)
- → 3.0 10⁸ neutrons/cm²

+ PV observable

PSI Workshop, October 2016

Challenges with HPGe detectors JG U

Neutron damage

- Few times 10⁸ becomes problematic
- Depends on the detector type (GMX is • better than n type is better than p type)
- Is 'fixable', but not to be taken lightly

Resolution (keV) FWHM

60

30

10

6

3

107

A precise SM PV violation > 10⁹

3 10⁹ n/cm²

JGU Challenges with HPGe detectors in a muon experiment

Neutron damage

- Few times 10⁸ becomes problematic
- GMX is better than n type than p type
- Is 'fixable', but not to be taken lightly
- A precise SM PV violation > 10⁹

- We observe 2 keV \rightarrow 3-4 keV FWHM, rising with rate
- BLR history
- Good resolution with O(10 kHz) detector rate is possible

Table 2. Energy resolution vs. rate for the algorithm in FPGA.

Filter Set	Input Rate (Kcps)	Energy resolution (FWHM, keV)
A	5.0	2.09
	32.4	2.43
	54.3	3.29
	73.2	4.20
	100.3	5 , 4.23
В	100.3	3.69
	195	5.58
	425	10.15
	500	21.49

JGU Challenges with HPGe detectors in a muon experiment

Neutron damage

- Few times 10⁸ becomes problematic
- GMX is better than n type than p type
- Is 'fixable', but not to be taken lightly
- A precise SM PV violation > 10⁹

Time resolution

- 10 ns comes out of the box for > 1 MeV
- For 'low' energy pulses, i.e. ca. 300 keV, one need the waveform

Energy resolution

- We observe 2 keV \rightarrow 3-4 keV FWHM, rising with rate
- BLR history
- Good resolution with O(10 kHz) detector rate is possible

JG U 2S1S around Z=30

BSM Physics? What is the reach of such a project ? 0.245 v deep-inelastic scattering E158 MOLLER 0.240 (JLab) MESA (Mainz) TT Qweak (JLab) $\sin^2 \theta_w(Q)$ EIC (statistical error only) SoLID (JLab) 0.235 APV (Cs) LEP 4_{FB} (bb) ± a little below the Standard Model value by about **1.5** σ . 0.230 SLD New experiments on Ra (Z=88) and Fr (Z=87) 0.225 0.0001 0.01 1 100 10,000 Q(GeV)

'O(1) SM test ', Pospelov

JGU 2S1S around Z=30

TOC

- Explain the situation for 2S1S around Z=30 : short!
 - Why revisit: Gamma spectroscopy did get a lot better (refer to question dave)
- X ray BG ٠
 - MC -> S/B, The not case for Compton suppression
 - coincidence idea. Point out pitfalls ٠
- Test beam 2015
 - Show picture. Real spectrum: show. Also more BG ٠
 - 2S population ٠
 - Timing: prompt, not ideal ٠
 - Electrons. Delayed electron cleanup, and the case for better timing ٠
 - **BGsuppression with coincidence** ٠
 - Rough coincidence, remove X rays. Factor 8 with current timing ٠
 - Illustrate with 2P1S. Target 2P1S ٠
 - Total BG suppression in ROI. Eff is a lot lower than in the ideal case. ٠
 - Should I have seen the 2S1S (~50 counts) ٠
- Scaling up
 - Numbers. phase 1: see 2s1s: looks ok. phase 2: PV: large scale
 - Suppression ٠
 - How would it look like: lots of HPGe. > 10% solid angle ٠
- Challenges for the HPGe detectors
 - Neutrons ٠
 - Timing and E resolution at high rate IPA, September 2016, Orsay

JGU Challenges with HPGe detectors

0.25 10-3 for 2P1S exp, 0.4 estimated

0.25 10-3 for 2P1S exp, 0.4 estimated

9.2 10⁵ counts in singles spectrum

50 counts in 2S1S expected in coincidence spectrum

Loos about 0.003 due to wide cut, was expecting 0.5-1%

Fe data: Hartmann, F. J., von Egidy, T., Bergmann, R., Kleber, M., Pfeiffer, H. J., Springer, K., and Daniel, H. Phys. Rev. Lett. 37, 331–334 Aug (1976)

JGU Challenges with HPGe detectors

JG<mark>U</mark> Work plan

Roadmap towards PV 2S1S experiment

- 1. Understand cascade BG with MC simulations
- 2. Suppress BG utilizing X-ray coincidences
 - + 2S population
 - 2015 Test Beam

detector response, and full event generator

next: Monte Carlo with realistic setup,

- Scale up to experiment with large solid-angle segmented HPGe detectors
 ? Can we achieve a S/B of O(1) ?
- 3. Make first measurement of the 2S1S 1γ transition with low BG
- 4. Design PV experiment
 ? Can we measure a PV observable with O(100 days), O(10⁵ μ/s)
- 5. Large scale PV experiment