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2S1S around Z=30

Revisit PV for Z ≈ 30    →    Why Z ≈ 30  ?

1s

2s
2p

E1+M1
1γ B.R. (~10-4)

Optimizing 3 parameters:
• 1γ to 2γ B.R.
• 2S2P depopulation (via 1γ and Auger)
• PV effect (amount of mixing/E1)

Feinberg and Chen

Missimer and Simons

McKeen and Posopelov

Is Z ~ 30 really the lower limit ?

ΔE
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2S1S around Z=30
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1.6 MeV (70 %)

1.65 MeV (~10-4)
E1+M1

~4-6 %

This Talk: Revisit PV for Z ≈ 30

1. Can we see the 2s1s ?

2. Can we get the statistics for 
a PV 2s1s experiment?

PSI Workshop, October 2016



4

Progress in HPGe technology

PSI Workshop, October 2016
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2S1S around Z=30

1s

2s
2p
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2255 keV

602 keV
642 keV

284 keV 283 keV

1.6 MeV (70 %)

1.65 MeV (~10-4)
E1+M1

~4-6 %

1.95 MeV (8 %)

Prompt background from
Compton scattered 
(n>2)P1S transition 

PSI Workshop, October 2016
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MC background estimation from the cascade

S/B:
• 0.056 for 100 % HPGe
• 0.028 for 20 % HPGe

the ‘ideal’ singles spectrum

PSI Workshop, October 2016
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MC background estimation from the cascade

S/B:
• 0.056 for 100 % HPGe
• 0.028 for 20 % HPGe

the ‘ideal’ singles spectrum

Veto multi-site events
with segmented detectors

Compton shield:
• works to a 

factor 3-5

Improvements to reduce BG?

BGO shield

3P1S

4P1S

PSI Workshop, October 2016
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2S1S around Z=30
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1.6 MeV (70 %)

1.95 MeV (8 %)

1.65 MeV (~10-4)
E1+M1

316 keV
+ 440 keV
+ …

360 keV
~4-6 %

intensities adopted from

HOWTO suppress the BG with a factor > 20

• Follow the Cascade

• Singles → X-ray coincidences

PSI Workshop, October 2016
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Nov 2015 TestBeam

muon counter

collimator + veto counter

target
• PVC
• Zn
• Pb
• Re

PSI Workshop, October 2016
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Nov 2015 TestBeam

PSI Workshop, October 2016
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Nov 2015 TestBeam

PSI Workshop, October 2016
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2S1S around Z=30

Prompt Zn Spectrum

2p1s

3p1s

>3p1s

3d2p

>3d2p

nuclear lines
Non-cascade BG

PSI Workshop, October 2016

50 ns slice
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2S1S around Z=30

From ratio between 3P2S / other lines, Fribourg measurement on Fe:

2S population = 
𝐵.𝑅.(3𝑃1𝑆)

𝑁.𝑅.(2𝑃1𝑆)
*4 =  6(1) % 

PSI Workshop, October 2016

From Fe data (Hartmann et al.)
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Detector performance

TFA amplifier + 
discriminator + 
TDC
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2P1S

3.6 keV FWHM
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Background > 2.2 MeV

Cut: Michel electron after 50-100 ns
• Very clean prompt window. No Bremsstrahlung and nuclear capture products
• Can use electron to get muon polarization
• Loose 93 % events!

100 ns prompt window

50 ns prompt window

Better time resolution 
also cleans up BG!
No delayed electron 
required.

PSI Workshop, October 2016
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X-ray X-ray coincidences

How much background reduction can we achieve in the ROI?
1. Practice on 2P1S : broad cut
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X-ray X-ray coincidences

How much background reduction can we achieve in the ROI?
1. Practice on 2P1S

(n>2)P1S X-rays suppressed by factor 8 or more

(n>2)P1S are ‘gone’

PSI Workshop, October 2016
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X-ray X-ray coincidences

How much background reduction can we achieve in the ROI?
1. Practice on 2P1S : broad cut
2. Targeted 2P feeding cut
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X-ray X-ray coincidences

How much background reduction can we achieve in the ROI?
1. Practice on 2P1S : broad cut
2. Targeted 2P feeding cut
3. Targeted 2S feeding cut
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X-ray X-ray coincidences

1. Wide → Narrow coincidence window: Eff. loss of < 0.5 (From 2P1S)

2. Wide →Narrow coincidence window: Background in ROI goes down 
by a factor of 10

PSI Workshop, October 2016

50 ns slice
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Background suppression

Total BG suppression

Prompt:

• Factor 3 from Compton shield

• Factor 8 x 10/2 from X-ray coincidences
→ S/B of 2S1S > 1

Non-Prompt

• Delayed electron (but efficiency loss!)

• Scales with timing resolution HPGe

0.05(From MC) * 8 * 5 = 2
S/B for 2S1S should now be O(1) or better

PSI Workshop, October 2016
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Background suppression

Total BG suppression

Prompt:

• Factor 3 from Compton shield

• Factor 8 x 10/2 from X-ray coincidences

Non-Prompt

• Delayed electron (but efficiency loss!)

• Scales with timing resolution HPGe
>50 ns  →  10 ns  →  …

PSI Workshop, October 2016
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X-ray X-ray coincidences

Testbeam October 2016: 10 ns FWHM from SIS3316, out of the box

4 ns FWHM

Save waveform to improve timing offline

(last weeks data)

(last weeks data)

PSI Workshop, October 2016
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Background suppression

Where is the 2S1S?

PSI Workshop, October 2016

Wide energy cut
2S feeding cut

I expect < 1 count after all cuts (0.6 in most optimistic case)
Background in ROI = 0.26 counts/keV

Check = Expect ~ 3000 counts in 2P1S after all cuts, I see 2600

2P1S behaves as expected

50 ns slice
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Scaling up

Next Step: Observing 2S1S:

• Current S/B 1-2
• We can still improve 

• Factor 3 from Compton shielding
• Factor of 5(?) from timing

→ One week at 50 kHz μ-

→ 6 high-efficiency HPGe detectors @ 20 cm

→ 250(20) Counts in 2S1S after cuts

→ 6 106 neutrons/cm2

From this we would learn:
• See the 2S1S
• Establish S/B
• Establish Branching Ration

PSI Workshop, October 2016
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Scaling up

Next Step: Observing 2S1S:

• Current S/B 1-2
• We can still improve 

• Factor 3 from Compton shielding
• Factor of 5(?) from timing

→ One week at 50 kHz μ-

→ 6 high-efficiency HPGe detectors @ 20 cm

→ 250(20) Counts in 2S1S after cuts

→ 6 106 neutrons/cm2

From this we would learn:
• See the 2S1S
• Establish S/B
• Establish Branching Ration

PSI Workshop, October 2016

μ
μ detectors

e- detectors

X-ray tagging detectors
• HPGe
• High resolution 

scintillator (e.g. LaBr3)

HPGe detectors

e-
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Scaling up

Next Step: Observing 2S1S:

• Current S/B 1-2
• We can still improve 

• Factor 3 from Compton shielding
• Factor of 5(?) from timing

→ One week at 50 kHz μ-

→ 6 high-efficiency HPGe detectors @ 20 cm

→ 250(20) Counts in 2S1S after cuts

→ 6 106 neutrons/cm2

From this we would learn:
• See the 2S1S
• Establish S/B
• Establish Branching Ration

PSI Workshop, October 2016

μ
μ detectors

e- detectors

HPGe detectors

e-

2 Miniball cluster detectors
can de the job
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Scaling up, estimating some numbers

1. Observing 2P 1S:

→ One week at 50 kHz μ-

→ 6 high-efficiency HPGe detectors @ 20 cm

→ 800 Counts in 2S1S after cuts

→ 6 106 neutrons/cm2

2.    Observing 2P 1S:

→ 100 days at 100 kHz μ-

→ 50 % solid angle for HPGe

→ 8 10-4 statistical error on 2S1S = O(PV)

→ 3.0 108 neutrons/cm2

PSI Workshop, October 2016

μ
μ detectors

e- detectors

HPGe detectors

e-

(here the MiniBall detectors act as a generic placeholder)
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Scaling up, estimating some numbers

1. Observing 2P 1S:

→ One week at 50 kHz μ-

→ 6 high-efficiency HPGe detectors @ 20 cm

→ 800 Counts in 2S1S after cuts

→ 6 106 neutrons/cm2

2.    Observing 2P 1S:

→ 100 days at 100 kHz μ-

→ 50 % solid angle for HPGe

→ 8 10-4 statistical error on 2S1S = O(PV)

→ 3.0 108 neutrons/cm2

PSI Workshop, October 2016

μ
μ detectors

e- detectors

HPGe detectors

e-

(here the MiniBall detectors act as a generic placeholder)

+ PV observable
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Challenges with HPGe detectors

Neutron damage
3 109 n/cm2

• Few times 108 becomes problematic

• Depends on the detector type (GMX is 
better than n type is better than p type)

• Is ‘fixable’, but not to be taken lightly

• A precise SM PV violation > 109

Ortec

PSI Workshop, October 2016
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Challenges with HPGe detectors in a muon experiment

Neutron damage

• Few times 108 becomes problematic

• GMX is better than n type than p type

• Is ‘fixable’, but not to be taken lightly

• A precise SM PV violation > 109

Energy resolution

• We observe 2 keV → 3-4 keV FWHM, rising with rate

• BLR history

• Good resolution with O(10 kHz) detector rate is possible

PSI Workshop, October 2016
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Challenges with HPGe detectors in a muon experiment

Neutron damage

• Few times 108 becomes problematic

• GMX is better than n type than p type

• Is ‘fixable’, but not to be taken lightly

• A precise SM PV violation > 109

Energy resolution

• We observe 2 keV → 3-4 keV FWHM, rising with rate

• BLR history

• Good resolution with O(10 kHz) detector rate is possible

Time resolution

• 10 ns comes out of the box for > 1 MeV

• For ‘low’ energy pulses, i.e. ca. 300 keV, one need the waveform

PSI Workshop, October 2016
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2S1S around Z=30

a little below the Standard 

Model value by about 1.5σ.

New experiments on
Ra (Z=88) and Fr (Z=87) 

What is the reach of such a project ? 

PSI Workshop, October 2016

BSM Physics?

‘ O(1) SM test ‘ , Pospelov
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2S1S around Z=30

TOC

• Explain the situation for 2S1S around Z=30 : short!
• Why revisit: Gamma spectroscopy did get a lot better (refer to question dave)

• X ray BG
• MC -> S/B , The not case for Compton suppression
• coincidence idea. Point out pitfalls

• Test beam 2015
• Show picture. Real spectrum: show. Also more BG
• 2S population
• Timing: prompt, not ideal
• Electrons. Delayed electron cleanup, and the case for better timing
• BGsuppression with coincidence

• Rough coincidence, remove X rays. Factor 8 with current timing
• Illustrate with 2P1S. Target 2P1S
• Total BG suppression in ROI. Eff is a lot lower than in the ideal case.
• Should I have seen the 2S1S (~50 counts)

• Scaling up
• Numbers. phase 1: see 2s1s: looks ok. phase 2: PV: large scale
• Suppression
• How would it look like: lots of HPGe. > 10% solid angle

• Challenges for the HPGe detectors
• Neutrons
• Timing and E resolution at high rate
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Challenges with HPGe detectors

0.25 10-3 for 2P1S exp, 0.4 estimated

9.2 10^5 counts in singles spectrum

50 counts in 2S1S expected in coincidence spectrum

Loos about 0.003 due to wide cut, was expecting 0.5-1%

Fe data: Hartmann, F. J., von Egidy, T., Bergmann, R., Kleber, M., Pfeiffer,
H. J., Springer, K., and Daniel, H. Phys. Rev. Lett. 37, 331–334 Aug (1976)
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Challenges with HPGe detectors
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Work plan

Roadmap towards PV 2S1S experiment

1. Understand cascade BG with MC simulations

2. Suppress BG utilizing X-ray coincidences 
+ 2S population

• 2015 Test Beam

• Scale up to experiment with large solid-angle
segmented HPGe detectors
? Can we achieve a S/B of O(1) ?

3. Make first measurement of the 2S1S 1γ transition with low BG

4. Design PV experiment
? Can we measure a PV observable with O(100 days), O(105 µ/s)

5. Large scale PV experiment

next: Monte Carlo with realistic setup, 
detector response, and full event generator

PSI Workshop, October 2016


