

Advanced experiments and facility plans at EERM

Filippo Bencivenga

www.elettra.eu

- 1) Experimental facilities at FERMI
- 2) Multi-FEL pulses for advanced experiments
- 3) FEL-based four-wave-mixing
- 4) Short-term plans (2016-2018)
- 5) Mid-term plans

The FERMI facility

The FERMI beamlines

@ the beginning of user operation

Experimental end stations

 EIS-TIMEX → solid-state samples under "extreme" and metastable conditions

Masciovecchio et al., JSR 2015

- 2) <u>DiProl</u> → Diffraction and projection imaging ("multipurpose" end-station) Capotondi et al., RSI 2014
- 3) LDM → Low density matter: gas phase samples (atoms, molecules and clusters) Svetina et al., JSR 2015

Ellipsoidal Mirror (EM): a few µm² focal spot size (fixed)

Kirkpatrick-Baez (KB): adjustable focal spot "HxV" with H,V=10-1000 μm

The FERMI beamlines pump-probe capabilities

The FERMI beamlines pump-probe capabilities

FERMI: a "user driven" facility multi-FEL pulses for advanced experiments

The very first user activity of FERMI (Dec. 2012): the "twin-seed" experiment, a <u>fruitful collaboration between experimental, machine and laser physics teams</u>

Tailored soft x-ray pulses – PSI – May 12th 2016

FERMI: a "user driven" facility multi-FEL pulses for advanced experiments

FEL-based four-wave-mixing (FWM)

virt. or real exc. state B

XUV/soft x-ray coherent Raman scattering (XCRS)¹

Elettra Sincrotrone Trieste

With respect to optical CRS:

i) Larger ω_{ex} range (up to several eV's) \rightarrow high energy excitations, e.g. valence band excitons. ii) Resonant enhancement of $\chi^{(3)}$ close to core resonances allows to localize the site at which the elected excitation is created and probed. iii) Shorter wavelengths \rightarrow larger wavevectors (FWM signal sensible to the structure) & relaxed dipole selection rules

With respect to linear X-ray methods:

Multi-wave and coherent nature of the process \rightarrow correlations and real-time dynamics between selected (and distinct) atomic sites, not possible in linear methods (light-matter interactions take place on a given atomic site). Plus other kind of selectiveness typical of FWM interactions.

FERMI Physics Meeting – 16.03.2016

The first step: FEL-based TG → the 'TIMER' project

Goal: lattice dynamics at the nanoscale (transport phenomena, structural relaxations, acoustic and thermal properties, diffusion processes) on, e.g.: disordered systems (role of nm-sized elastic heterogeneities) and nanostructures (mechanics and thermodynamics)

 $\mathbf{k} = \mathbf{k}_1 - \mathbf{k}_2$ $|\mathbf{k}| = 4\pi \sin(\theta) / \lambda_1$ $\rightarrow |\mathbf{k}| = 0.02 \cdot 2 \text{ nm}^{-1}$ $(\theta / \lambda_1 \text{ up to } 50^{\circ} / 4 \text{ nm})$

The first step: FEL-based TG → "mini-TIMER"(@DiProI)

Tailored soft x-ray pulses – PSI – May 12th 2016

The first step: FEL-based TG → "mini-TIMER"(@DiProI), one year later...

New features (implemented):
i) Larger range for CCD and sample angles and selectable sample-to-CCD distance (fully motorized)
ii) "asymmetric" configuration for larger FEL-FEL delay at fixed 2θ

...and improved experience...

Improved quality of the data (double count rate with half of the FEL intensity, ~ 2 vs 5 μ J /pulse) and faster acquisition time (~ 120 vs 300 sec/point)

The first step: FEL-based TG → "mini-TIMER"(@DiProI), one year later...

TG vs FEL fluence (on Si₃N₄) \rightarrow evidence for a fluence dependent time decay \rightarrow generation and relaxation of a free electron grating

Bencivenga et al., Faraday Discuss. (accepted)

Tailored soft x-ray pulses – PSI – May 12th 2016

The second step: FEL-based CRS → "color mini-TIMER" !

1) E. Allaria et al., Nat. Comm. (2013); 2) F. Bencivenga et al., faraday Discuss. (2014)

The second step: FEL-based CRS → "color mini-TIMER" !

mini-TIMER: planned upgrades

Forthcoming upgrades (July 2016):

i) Fully encoded system (fast shift from TG to CRS)

ii) 20-scans or λ_{FEL} -scans at fixed $|k|=4\pi sin(\theta)/\lambda_{FEL}$

iii) Parallel detection of transient reflectivity and transmissivity signals

iv) Spectral analysis of FWM signals

v) Parallel detection of the reflected FWM signal

We decided to consider mini-TIMER as an instrumentation available for users \rightarrow 11 proposals in the 4th call, 4 allocated beamtimes

The next step: all-EUV FWM

 ω_{EUV1} - ω_{EUV2} in the multi-eV range (e.g. valence excitations)

New experimental facilities Sincrotrone \rightarrow the TIMER family

Experimental end stations

Elettra

Trieste

- **<u>EIS-TIMER</u>** \rightarrow "all FEL-based" FWM experiments, presently under commissioning</u>: two 1) commissioning weeks in 2015, two more foreseen in 2016, plus the first "real" experiment! User operation will start in 2017 (13 proposal from the 5th call, plus 11 for mini-TIMER). Bencivenga et al., JSR 2015
- <u>mini-TIMER@DiProl</u> \rightarrow Highly requested setup (~ 30 % of DiProl's proposals), we are going 2) to upgrade the setup in order to be as much complementary as possible with EIS-TIMER. If optical probing is acceptable, mini-TIMER is better than TIMER because of the possibility to continuously vary the FEL crossing angle
- **<u>nano-TIMER</u>** \rightarrow a test setup based on diffraction gratings, presently <u>under design</u> (Svetina 3) and Bencivenga). The realization and the first test is foreseen in late 2017 Bencivenga et al., NJP 2013; JSR 2015

New experimental facilities → EIS-TIMER

New experimental facilities → EIS-TIMER

1) First commissioning week (July 2015): FEL "pump" beams at the sample, with an ameliorable focus but still enough to provide evidences of FEL-FEL interference (i.e. the generation of permanent gratings)

2) Second commissioning week (Nov. 2015): much better focus, better shape of permanent gratings and evidence for a TG signal

New experimental facilities → nano-TIMER

In principle one cannot ignore the (k_3, k_1^*, k_1) and (k_3, k_2^*, k_2) interactions, in particular if real excited states are involved...

3) <u>nano-TIMER</u> → a test setup based on diffraction gratings, presently <u>under design</u> (Svetina and Bencivenga). The realization and the first test is foreseen in <u>late 2017</u> Bencivenga et al., NJP 2013; JSR 2015

Tailored soft x-ray pulses – PSI – May 12th 2016

New experimental facilities → nano-TIMER

"wavefront division" beamsplitting (mirrors)

3) **<u>nano-TIMER</u>** \rightarrow a test setup based on diffraction gratings, presently under design (Svetina and Bencivenga). The realization and the first test is foreseen in late 2017 Bencivenga et al., NJP 2013; JSR 2015

New experimental facilities

Experimental end stations

- <u>MagneDyn</u> (magnetization dynamics and phase transitions in complex materials, ultrafast control of demagnetization); only FEL-2 beamline → beamline assembling (Nov. 2016), commissioning in 2017
- 2) <u>TeraFERMI</u> (THz pulses between 1 mm and 20 µm, with MV/cm fields); "parasitic" beamline that can work in parallel with the others → first light in Dec. 2015, commissioning in 2016
- 3) T-REX (user-dedicated ultrafast optical laboratory)

Tailored soft x-ray pulses – PSI – May 12th 2016

The "old" FERMI beamlines vs the actual Elettra Sincrotrone performances of the source(s) Trieste PADReS TIMEX Some PADReS devices are being EM upgraded accordingly (2016) Shutters; beam defining apertures; beam position FEL-1 monitors; 10 monitors; **Delav** line 3-way DiProl KΒ gas attenuators; solid (AC/DC) switch state filters; steering FEL-2 mirrors: spectrometer KB LDM Reality vs Table 3.1.6: Advanced Parameters FEL-1. expectations Now down to ~15 nm (most of the EUV range) and Parameter Value Comments 100 ÷ 40 nm <u>fully tunable</u> (core level spectroscopy) Photon energy range 50 ÷ 100 fs Pulse length Any value in between is acceptable Close to TL Bandwidth About 20 meV (FWHM)

Key parameters for FEL-1, limited experience
with FEL-2 but this will come soon (the user operation will start in a few weeks)

Tailored soft x-ray pulses – PSI – May 12th 2016

Linear / Circular

Table 3.1.7: Advanced Parameters FEL-2.

50 Hz

 $1 \div 5 \, \text{GW}$

Variable

+ multipulse

Polarization

Peak power

Repetiton rate

FEL-1: stable and reliable performances established

FEL-2: nominal performances established down to 4 nm

User experiments with FEL-2 are coming soon (2016) To date ~30 % of user proposals in the 4th and 5th calls; among them another multi-pulse/multi-color approach (FEL-2 is intrinsically a two-color source!)

FEL sources (short-term plans)

FEL-1: stable and reliable performances established

FEL-2: nominal performances established (down to 4 nm!)

User experiments with FEL-2 are coming soon (2016)

Design, construction and test of a prototype for a new high gradient accelerator LINAC structure (2018)

Echo-Enabled Harmonic Generation experiment on FEL-2 (2018)

...but you already have some results!

Tailored soft x-ray pulses – PSI – May 12th 2016

FEL sources (mid-term plans) 4 points are under evaluation:

Shorter wavelengths (deeper in the soft x-ray)

Shorter pulse duration (CPA, towards the fs)

Improved multi-pulse operation (ECHO)

Conclusions

- 1) FEL-1 operations are stable and reliable, from the source down to the end stations. Multi-pulse/multi-color operation has permitted to achieve high-profile results
- 2) Short-term plans (machine):
 - i) user operation with FEL-2 (from 2016), including multi-pulse operation (in 2017)
 - ii) prototype of a new LINAC structure (2018)
 - iii) "echo" experiment (2018)
- 3) Short-term plans (photon transport/end-stations):
 - i) upgrade of the photon transport to allow reliable operation down to 4 nm (ongoing)ii) upgrade of the mini-TIMER system to meet user requirements (ongoing)
 - iii) commissioning of EIS-TIMER (ongoing) and beginning of user operation (2017)
 - iv) design (ongoing) and construction of nano-TIMER (2017)
 - v) commissioning (ongoing) and user operation of TeraFERMI (2017)
 - vi) construction (late 2016) and commissioning of MagneDYN (2017) vii) user operation at T-REX
- 4) The "future of FERMI" (in four points):
 i) shorter wavelengths (ideally down to ~1 nm, soft x-ray range)
 ii) shorter time duration (ideally down to the fs range, CPA)
 iii) multi-pulse operation (ECHO)
 iv) parallel operation of FEL-1 and FEL-2

Acknowledgements, an advertisement and a proposal

Our best results come from internal collaborations between experimental teams (C. Masciovecchio), laser team (M. B. Danailov), machine physicists (L. Giannessi) and photon transport team (M. Zangrando)

• In dou

- Spectral overlap at 1 nm
- In double pulse mode you can have 4 pulses
- Jitter ???