PAUL SCHERRER INSTITUT

Roger Kalt on behalf of the LLRF team :: Paul Scherrer Institut

An overview of the SwissFEL LLRF system and its potential use in the SLS

17.11.2016 – 20th ESLS-RF Workshop

- **1. System Overview**
 - RF Stability Requirements
 - Hardware / Software / Firmware Implementation
- **2.** Performance Measurements
 - System Acceptance Test Results from Lab
- **3.** Summary & Outlook
 - Conclusion
 - SLS LLRF Outlook

PAUL SCHERRER INSTITUT

1. Overview Machine+Stability Requirements

	Pulse-to-pulse stab.
S-band Phase [*]	0.018° rms
S-band Voltage [*]	1.8e-4 rms
X-band Phase	0.072° rms
X-band Voltage	1.8e-4 rms
C-band Phase	0.036° rms
C-band Voltage	1.8e-4 rms

LINI TEQUITETHETIIS	
LLRF actuator	stability
S-band Added Ph. Noise	0.009°
X-band Added Ph. Noise	0.038°
C-band Added Ph. Noise	0.017°
Amplitude (all bands)	1.6e-4
LLRF measurement	resolution
LLRF measurement S-band Phase	resolution 0.007°
LLRF measurement S-band Phase X-band Phase	resolution 0.007° 0.02°
LLRF measurement S-band Phase X-band Phase C-band Phase	resolution 0.007° 0.02° 0.01°

Page 3

1. Overview LLRF Hardware Architecture

Basic Features:

- IF based digital system ~ 40 MHz
 - f_{IF}=41.65 MHz for injector
 - f_{IF} =39.67 MHz for linac
- commercial VME64x based FPGA/CPU processing board (PSI controls standard board)
- FMC based commercial ADC/DAC 250 Msps / 16 bit
- 8µs data acquisition window / 250 Msps (defined in FPGA firmware and limited by FPGA on-chip SRAM)
- 100 Hz pulse-to-pulse RF feedback
- Vanilla Linux based operating system, EPICS on thereast each processing board
- Custom designed digital interface transition card

➔ Hardware, Firmware and Software are independent of RF frequency

Basic Features:

- in-house developed RF front-ends for
 - S- and C-band
 - 24 channel RF receiver
 - LO & clock generation
 - vector modulator / LLRF actuator
- CW low noise RF reference signal required
- Due to common IF around 40 MHz
 → some hardware components are the same for all bands.
- **postponed**: drift calibration unit

➔ Pizza box design which ensured performance and keeps flexibility / minimizes cost if RF frequency needs to be changed.

1. Overview LLRF receiver concept

Basic Features:

- 24 equal receiver channels
- Dual channel down converter modules
- Internally I2C and digital / static control used
- IF gain PCB is common for S- and C-band
 - Controllable digital attenuator
 - 0...-7dB in 1 dB steps
 - +60dB pre amplifier for beam-loading measurements
- Control und status monitoring interface over EtherCAT fieldbus

1. Overview non-IQ demodulation bandwidth

- 1. Trigger based DAQ 8μs duration S-band: sampling 249.90 Msps
- Sequential FPGA controller for data pre-processing (~ 350 μs)
- Non-IQ demodulation 1/6 Bandwidth 37.2 MHz
- 4. Additional FPGA filtering to remove upper sideband of IF

ightarrow New Bandwidth 34.6 MHz

5. IRQ over PCIe to CPU

1. Overview LLRF DAQ + Feedback on 1 Slide

2. Performance Measurements

2. Performance Setup for Measurement System

Courtesy: F. Gärtner

2. Performance Rx Crosstalk

_											Rx Cros	stalk measure	ed without Pro	eAmp (average	ed over 5 acq	uisitions)									
24	24 -92.4															-82.9									•
	23 <mark>-89.3</mark>															-83.3	-83.4								-86.4
	22 -92.1																								-92.2
	21 -88.8																								-92.9
	20 -92.6																								-90.7
	19 -92.3												-84.7												-89.9
	18 -87.2	-83.6	5 -89							-82.2	-81.8														-96.2
	17 -86.8										-83.5								-83.2						-93.7
ŭ	16 -90.2															-81.9									-84.9
ש	15 -92.3																							-85.4	-87.6
ل ح	14 -90.6															-84.7						-84.6			-92.2
X	13 -96.2																						-84.8		-90.8
	12 -91.7																			-83.9					-92.9
eq	11 -91.6												-85.1							-85.4					-91
pli	10 -85.8	-84.4																	-83.4				-91.1	97.	8)
q	9 -89.2										-85.6							-83.7	-84.2				-93	-91.8	- 3
S	8 -90.5															-85.1								-87.3	-84.8
	7 -90.3																								-89.9
	6 -93.1							-84.6																	-92.5
	5 -91.5		-93	.2 -																					-93.6
	4 -90.4	-86	81	:4	•								-85.3												-96.3
	3 -90.7		b 0		-85.7																				-92
	2 -89.8		-8																-83						-93.2
_	1 0	-87.7	7 -89	.7 -	-87.6	-93.3	-90.3	-90.3	-93.7	-88.3	-85.8	-91.8	-94.1	-93.4	-91.7	-90	-90.3	-89.1	-89.9	-90.9	-89.7	-90.9	-93.1	-89.9	-92.9
•	1	2	3		4	5	6	7	8	9	10	11 r	12 neasured Rx (13 Channel [1 - 2	14 [4]	15	16	17	18	19	20	21	22	23	24
	1										Me	asu	red H	≺x ch	nann	el						_			24
				Ρ	ara	am	ete	rs		S-b	and	d se	ries	s [3]		S-ba	and	pro	otot	ype	[1]				
Crosstalk [dB]								> 8	0					>	70										

2. Performance Rx Intermodulation Distort.

2. Performance Setup for System Loop

Courtesy: F. Gärtner

Standard Controls 7-Slot VME Crate from Trenew, ~ 2kCHF

DAC @ Slot 1

Courtesy: F. Gärtner, S-band PreSeries VM Jitter Analysis [2]

3. Summary & Outlook

• The LLRF basic system fulfills the defined RF stability requirements (1µs gate)

LLRF actuator	Stability required	Stability measured				
		(worst)				
S-band Phase	0.009° (added)	0.009° (absolute)				
Amplitude	1.6e-4	1.2e-4				

LLRF measurement	Resolution required	Resolution measured (worst)
S-band Phase	0.007°	0.0061°
Amplitude	1.0e-4	0.72e-4

- Robust system design which is able to run 24/7/365
- Able to provide real time beam synchronous waveform data for each ADC ch.
- Possible future improvements are:
 - Reduce influence of standard switching cPCI power supplies
 - Extend fw/sw and add more algorithms for data preprocessing to FPGA and CPU to provide real-time data analysis
 - If required, replace FMC cards with new ADC/DAC chips with better parameters

Parameter	Spec. SwissFEL	Spec. SLS	Comment
RF frequency	2.9988 GHz	2.99782 GHz 500 MHz	TW: match Buncher: TBD
Operation mode	100 Hz pulsed	3 Hz pulsed	Match
DAQ pulse length	up to 8µs	4.5µs	Match
RF Station tolerances	Amplt: 1.8e-4 Phase: 0.018 deg	Amplt: 2.0e-4 Phase: 1.0 deg	Match, also measurement sys.
No. of ADC ch.	24	~ 12	Match, scalable
RF frontend	2.99712 GHz for test facility, hw available	2.99782 GHz	Match, various options for auxiliary channels
RF reference input	2.99712 / 2.9988 GHz CW	2.99782 GHz CW	SLS provides pulsed RF ref. signal → upgrade
System Integration	EPICS	EPICS	adaption required

Parameter	Spec. SwissFEL	Spec. SLS	Comment
Digital backend	IF ~40 MHz FPGA/CPU FMC ADC/DAC	TBD FPGA/CPU FMC ADC/DAC	Match, part of infrastructure can be re-used
No. of ADC ch.	24	~ 12	Match, scalable
RF frequency	2.9988 GHz	~ 500 MHz ?	Adaption required
Operation mode	100 Hz pulsed	CW	Firmware adaption required
RF frontend	2.9988 GHz	500 MHz	New frontend required
Tuning Loop	Not included	Required	Required, can profit from already used EtherCAT
System Integration	EPICS	EPICS	Adaption required

- The projects can be separated into:
 Linac
 BO+SR
- We can profit from already built-up hardware, firmware, software and knowledge from
 - SwissFEL from the COTS hardware and fw/sw infrastructure
 - HIPA proton accelerator from the CW operation mode firmware, feedback and tuning loops
- There is no 1:1 drop-in replacement.

Wir schaffen Wissen – heute für morgen

My thanks go to

- LLRF team
- Lukas Stingelin for information about SLS RF/LLRF plants

[1]	System Characterization Report S-Band PreSeries System, (Publication date 17-Jul-2015 18:17:51)
[2]	FEL-S-Band-VM-Jitter, S-Band PreSeries Vectormodulator jitter analysis, 31.7.2015
[3]	System Acceptance Test Report S-Band Series System, (9x series systems, Nov. 2015 – Feb. 2016)
[CDR]	SwissFEL Conceptual Design Report, V20, April 2012