PAUL SCHERRER INSTITUT

Henrik Lemke :: SwissFEL :: Paul Scherrer Institut

Experimental Station B Ultrafast Diffraction

SwissFEL User Kick-off Meeting, 06.12.2016

ESB location in ARAMIS Experimental area

Team (ESB Endstation)

G. Ingold: BL Scientist / FEMTO group leader
P. Beaud: Senior Scientist (50% FEMTO)
H. Lemke: BL Scientist (formerly: LCLS)
A. Oggenfuss: Technician
J. Rittmann: Postdoctoral Researcher
P. Böhler: Mech. Design/Engineering (PSI AMI
A. Keller: Mech. Design/Engineering (PSI AMI)
Y. Deng: Laser Scientist (SwissFEL Laser Group
T. Zamofing: Software (PSI Controls Group)

In collaboration (ESB Instrument):

SwissFEL Management	<u>Beam</u>
R. Abela	Claud
B. Patterson	Christ
L. Patthey	
	Laser
X-ray Diagnostics	Ch. Er
P. Juranic	Ch. Ha
J. Rehanek	M. Div
DAO	Detec
L. Sala	A. Mo
S. Ebner	B. Sch
X-ray Optics Group	<u>Mech</u>
U. Flechsig	P. Wie
R. Follath	

A. Jäggi

<u>Beamline</u> Claude Pradervand Christoph Hess

<u>Laser Group</u> Ch. Erny Ch. Hauri M. Divall

<u>Detectors</u> A. Mozzanica B. Schmidt

Mech. Engineering P. Wiegand

Synchronization S. Hunziker

Beam trajectories

Conclusions

The ESB station is ...

... specialized for solid state pump/probe experiments

... flexible for implementation of larger equipment

(e.g. ESB-MX/Pedrini).

Example: Correlated electron systems

Beaud et al. PRL 103, 155702 (2009).

Material phases with very different electronic and magnetic properties through complex interplay of electronic and ionic structure.

Correlated material \rightarrow correlated Mechanism

Correlated Structure suggests switching mechanism through interaction between degrees of freedom

Time information can unravel process cascades/dependencies

Causality in mechanism cascade can be detected by selective excitation and probing of specific DOFs

Example Manganite – resonant diffraction

Beaud et al., Nature Materials 13, 923-927 (2014)

Experimental requirements

- Conditioning of sample system
- Selective manipulation of different DOFs
- Selective sensitivity to different DOFs
- Sufficient time resolution to separate

process cascades

Controlling sample Condition: T, P, B

Compromise between sample degrees of freedom and sample environment

- Cryostats
- High B-field superconducting magnets
- Vacuum chambers
- High-P setups

Requirement of flexible platform

Examples from

P09 and P01, PETRA III (DESY)

Flexible Diffractometer options

Exchange Modules Sample μ rotation High load к sample arm goniometer non-magn. Base **Platforms** Sample θ Sample θ 2θ arm Detector $\delta \& \gamma$ Beam positioning table (3 DOF) Beam positioning table

Thierry Zamofing

PAUL	S C H E I	RER	NS	TUT
	-	_	\Box	
		<u> </u>		

Infrastructure for resonant diffraction at low Temperatures

Gerhard Ingold Alex Oggenfuss

LN2 / He cryo blower (30-100 K) e.g. with Kappa arm

Pump laser: wide range of excitation conditions

Ti:Sa laser System > 20 mJ, < 30 fs @ 100 Hz ~ 50/50 Timing/experiment

OPA: Topas HE

0.72 0.7

0.68

-500

0

Delay

500

Yunpei Deng

1100 nm			
ca. 1 mJ			
ca. 40 fs			

- < 15'000 nm ca. 10 µJ
- < 100 fs

Paul Beaud Christian Erny

1 – 10 THz

> 1 MV/cm, ca. 10 µJ

Page 14

S

Optimized Energy range: Pink pulse energy, BW (expected): Beam profile: 4.5-12.4 keV 1 mJ / pulse, <1% BW 300-600 μm (FWHM)

Single X-ray beam trajectory

Distance from end of undulator (m)

Rolf Follath Uwe Flechsig

Upgrades

- 1. Refractive optics
- 2. Harmonic rejection
- 3. Phase retarder

R. Follath et al. Proc. SRI (2015)

PAUL SCHERRER INSTITUT

Detection

Polarisation analyzer

Diffractometer with double detector arm

16M

Aldo Mozzanica

Module size	80x40 mm ²
Px size	75x75 μm²
Dyn. Range	10 ⁴ @ 12 keV

Patrick Suter

Sample - detector distances: -0.5 – 3 m

Pump/probe geometry / Timing diagnostics

6 DOF Diagnostics table between focusing optics

THz streak camera / Spectral encoding

Pavle Juranic

Instrument overview

- Experiment preparation
 - FEL compatibility of experiment (expected sensitivity, sample damage, etc.)
 - Feasibility and preparation measurements
 - Requirements for sample environment, pump laser, FEL beam parameters
 - Data access and treatment software