PAUL SCHERRER INSTITUT

Klaus Kirch :: Laboratory for Particle Physics :: Paul Scherrer Institut

Particle Physics at PSI

Summer student lecture, July 6, 2016

Matter research – fundamental particle physics

Discovery physics at high and low energies

The building blocks

The Standard Model Ac Denner

Source: FNAL

The Standard Model of Particle Physics

- is extremely successful ...
- ... but it does not explain
 - -Gravity, Dark matter
 - –Dark energy
 - -3 families
 - –QCD theta term
 - Values of particle masses and couplings
 - -Baryon Asymmetry of the Universe
 - -Conservation of baryon and charged lepton number

Fundamental Particle Physics

- I like to distinguish
 - –Precision measurements of parameters of the Standard Model
 - -Searches for physics beyond the Standard Model (ideally where its prediction is zero)
- Both are absolutely necessary to build a complete picture
- The more successful a theory the more we need to test it to its extremes!
- For example, QED tests, electroweak tests, and especially null tests

Complementary approaches

High Energy

High Intensity

PSI laboratory for particle physics is involved in both. High intensity: at PSI. Both test our current understanding of fundamental particles and interactions.

Search for new physics

High Energy

direct production of new particle

High Intensity

For example: Search for $\mu \rightarrow e\gamma$

Unique opportunity

This machine

Together with suitable targets and beamlines produces

the world-wide highest intensities of the lightest unstable particles of their kind:

Mesons: Pions, π^+ , π^- , π^0 Leptons: Muons, μ^+ , μ^- Baryons: UCN, n

The Heart of HIPA: The Ring Cyclotron

- at time of construction a new concept: separated sector Ring cyclotron [H.Willax et al.]
- 8 magnets (280t),
 4 accelerating resonators
 (50MHz), 1 Flattop (150MHz), Ø
 15m
- losses at extraction \leq 200W
- red. losses by increasing RF
 voltage was main upgrade path
- [losses \propto (turn number)³, W.Joho]

50MHz resonator

150MHz resonator

History of maximum beampower

milestones:

- new injector cyclotron ('84)
- upgrading Ring RF power
- replacing Ring cavities
- new ECR source

Originally planned: ≈100µA

today: 2.400µA

[routine: 2.200µA]

PAUL SCHERRER INSTITUT **PSI HIPA in the international context**

Neutron Sources:

Power

[MW]

0.3(1.0)

0.18

1.4

1.4

5.0

0.1...0.5

Courtesy: M. Seidel

HIPA serves three communities

The intensity frontier at PSI: π , μ , UCN

Precision experiments with the lightest unstable particles of their kind

Swiss national laboratory with strong international collaborations

Fundamental physics with muons

Bound state QED

The most precise value of the **proton charge radius** via a measurement of the Lambshift in muonic hydrogen

muhy.web.psi.ch

R. Pohl et al., Nature 466 (2010) 213 A. Antognini et al., Science 339 (2013) 417

Weak interaction

The most precise measurement of any lifetime: MuLan's μ^+ and a 0.6 ppm determination of the Fermi coupling constant

 $\tau = 2 \, 196 \, 980.3 \pm 2.2 \, \text{ps}$ (1.0 ppm)

The most precise measurement (10ppm) of the μ^{-} lifetime in pure hydrogen yields **MuCap**'s 1% determination of the $\mu^{-}p$ capture rate resolving the longstanding issue with the **Pseudoscalar coupling g**_p

www.npl.washington.edu/muon/ D.M. Webber et al., PRL 106(2011)041803 V.A.Andreev et al., PRL 110(2013)012504

New physics search

The best rare decay limit: A new **search for** $\mu \rightarrow e\gamma$ yields a branching less than 4.2x10⁻¹³

arXiv:1605.05081

CMS pixel detector development combines: chip and electronics design, advanced software, bonding technology and test beams:

Synergies of high and low energy technologies

PSI's DRS-4 Chip in use around the world: more than 2500 chips in about 30 experiments

Also: more than 30 experiments use Midas. Countless users of elog, often outside of particle physics

Synergies of high and low energy technologies

PSI's DRS-4 Chip in use around the world: more than 2500 chips in about 30 experiments

UCN Source at the Paul Scherrer Institut

Observed*: $(n_{B}-n_{\overline{B}}) / n_{\gamma} = 6 \times 10^{-10}$ SM expectation: $(n_{B}-n_{\overline{B}}) / n_{\gamma} \sim 10^{-18}$

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24]

* WMAP + COBE, 2003 $n_B / n_{\gamma} = (6.1 \pm 0.3) \times 10^{-10}$

EDM and symmetries

$$H = -\left(d\frac{\vec{\sigma}}{|\vec{\sigma}|} \cdot \vec{E} + \mu \frac{\vec{\sigma}}{|\vec{\sigma}|} \cdot \vec{B}\right)$$

A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP

Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau

PCT-Theorem a la Escher

Antiparticle

Particle

C ILL

nedm.web.psi.ch

This experiment is currently taking data at the PSI UCN source and has by now surpassed the sensitivity of the previous best measurement.

Thank you!

Picture: K. Schuhmann