

									S	Sup	ber	со	nd	luc	tiv	ity	'	In	troc
	1	IA 1 H	IIA	KN	οv	۷N	SUI	PEF)NI	OUC	TI	VE	IIIA	IVA	VA	VIA	VIIA	0 2 He
:	2	3 Li	4 Be		BLUE	ב = A			IN I I PRE	э :SSUI	RE			5 B	⁶ C	7 N	* 0	9 F	10 Ne
:	3	11 Na	12 Mg	IIIB	UVB	VB			ERH		THE 53	IB	IIB	13 AI	14 Si	15 P	16 S	17 CI	18 Ar
4	1	K 37	20 Ca 38	Sc 39	22 Ti 40	23 ¥	24 Cr 42	23 Mn 43	20 Fe	27 Co	28 Ni	29 Cu	30 Zn 48	Ga	Ge	53 As 51	Se Se	53 Br	50 Kr
5	5	Rb	Sr 56	Y 57	Zr	Nb	Mo	75	Ru 76	Rh	Pd	Ag 79	Cd 80	In 81	Sn	Sb 83	Te	85	Xe 86
6	3	Cs 87	Ba 88	*La 89	Hf 104	Ta 105	₩ 106	Re	Os	Ir	Pt	Au	Hg	ŤI	Pb	Bi	Po	Ăt	Rn
7	'l	Fr	Ra	+Ac	Rf	Ha	106	107	108	109	110	111	112	s	UPER	CON	оист	ORS.	.ORG
		*La Sei	nthar ries	nide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 T m	70 Yb	71 Lu	
		+ Acl Se	tinide ries	9	0 Th	Pa Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

	With: $B_z(\mathbf{r}) = \sum_{\mathbf{K}} \frac{B}{1 + \lambda^2 K^2} \exp(i\mathbf{K}\mathbf{r})$
	The second moment $\langle \Delta B_z^2 \rangle = \langle B_z^2 \rangle - \langle B_z \rangle^2$
	of the field distribution is given by:
	$\langle \Delta B_z^2 \rangle = \sum_{\mathbf{K} \neq 0} B_z(\mathbf{K}) ^2$
1	Taking into account the perfect triangular lattice where:
1	$K^2 = K_{m,n}^2 = \frac{16\pi^2}{3d^2}(m^2 + mn + n^2)$ and that $K^2\lambda^2 \gg 1$
2 L	$\langle \Delta B_z^2 \rangle = \frac{9\phi_0^2}{32\pi^4\lambda^4} (1 + \frac{1}{3^2} + \frac{1}{4^2} + \frac{2}{7^2} + \ldots)$
[$\langle \Delta B_z^2 \rangle = 0.00371 \frac{\phi_0^2}{\lambda^4}$
	By measuring the second moment of the field distribution (for example by µSR), we directly determine the London penetration
	Mastarschool PS

<u>Other model</u> : Analytical solution of the Ginzburg-Landau equations considering a Lorentzian function for the order parameter $ \psi(r) ^2$ of an isolated vortex:
$B(\mathbf{K}) = B(1-b^4) \frac{uK_1(u)}{\lambda^2 K^2}$
where: K_1 is a modified Bessel function of the second kind
$b \equiv B/B_{c2}$ $u^2 = 2\xi^2 K^2 (1+b)^4 [1-2b(1-b)^2]$
J.R. Clem , J. Low Temp. Phys. 18 , 427 (1975) Z. Hao et al., Phys. Rev. B 43 , 2844 (1991) A. Yaouanc et al., Phys. Rev. B 55 , 11107 (1997)
 Masierschool

