Scintillating Fiber Detector R&D for cLFV Experiments

Giada LTP Seminar May 8th 2017

SciFis for cLFV Experiments **MEG II** Mu3e (Phase I) $\mu^+ \rightarrow e^+ \gamma$ $\mu^+ \rightarrow e^+ e^- e^+$ Sensitivity Goal Sensitivity Goal $\approx 4 \times 10^{-14}$ $\approx 1 \times 10^{-15}$

SciFis for cLFV Experiments

Beam Monitoring

Particle Timing

Particle Tracking

SciFis for cLFV Experiments

Why scintillating fibers + Silicon PhotoMultipliers?

- Fast (good time resolution)
- Fast (sustain high rates)
- Little material budget
- Compatible with magnetic fields
- Compatible with vacuum
- Modular, versatile
- Low cost technology

Hamamatsu 13360-1350C

Particle Timing and Tracking (Mu3e)

Mu3e Experiment Phase I

~ 35 cm

Sensitivity Goal ≈ 1 x10⁻¹⁵

Scintillating Fiber Detector

Suppress accidental background by a factor ~100 (together with the tile detector)

~ 15 cm

28.02.17

Requirements:

- Timing resolution < 1 ns
- Detection efficiency ~100 %
- As little material as possible
- Comply with space constraints

Baseline design:

- Ribbons of scintillating plastic fibers of 250 µm thickness (12 modules à 3 layers = 4600 fibers)
- Silicon Photomultiplier (SiPM) arrays readout

Requirements:

- Timing resolution < 1 ns
- Detection efficiency ~100 %
- As little material as possible
- Comply with space constraints

Baseline design:

- Ribbons of scintillating plastic fibers of 250 µm thickness (12 modules à 3 layers = 4600 fibers)
- Silicon Photomultiplier (SiPM) arrays readout

Requirements:

- Timing resolution < 1 ns
- Detection efficiency ~100 %
- As little material as possible
- Comply with space constraints

Baseline design:

- Ribbons of scintillating plastic fibers of 250 µm thickness (12 modules à 3 layers = 4600 fibers)
- Silicon Photomultiplier (SiPM) arrays readout

R&D History

Bottom-up-approach Single fiber 🗯 telescope structures

Extensive tests in the laboratory and at (mostly PSI) beam lines

The Large Prototype

Asses single- and multilayer efficiencies and timing resolutions, and combine channels offline to emulate the SiPM array readout

Key Features

- 32 squared, 250 µm thin multiclad fibers with individual readout on both ends
- Aligned SiPMs
- Aluminum coating (100 nm)

Single Fiber – Beam Test @ πM1

For MIP (threshold 0.5 N_{phe} , AND): Mean $N_{Phe} \approx 4.6$ Detection efficiency $\epsilon \approx 72\%$

Multilayer detection efficiency

Double layer ε ≈ 89%

Triple layer ε ≈ 95%

Single Fiber – Beam Test @ πM1

For MIP (threshold 0.5 N_{phe} , AND): Mean $N_{Phe} \approx 4.6$ Detection efficiency $\epsilon \approx 72\%$ Timing resolution $\sigma_{T}^{core} \approx 680 \text{ ps}$

Light Yield

Timing Spectrum

Inclined Tracks

Sr90 Laboratory Measurement

Increased light yield / inclination of tracks clearly visible and consistent with expectations

Phi Angle Measurements

Extrapolation to Final Mu3e Hodoscope Performances

Mimic the Mu3e hodoscope by combining offline the SiPM channels of three consecutive fibers ≘ "optimized" array readout

Optimized Array – Beam Test @ πM1

Beam Monitoring (MEGII and Mu3e)

Scintillating Fiber Beam Monitor

Properties

- Fast
- Minimally invasive
- Capable of particle identification
- Compatible with magnetic fields
- Compatible with vacuum

"Rate Counter"

Measure muon beam size and rates also during normal MEG operation

Scintillating Fiber Beam Monitor

Properties

- Fast
- Minimally invasive
- Capable of particle identification
- Compatible with magnetic fields
- Compatible with vacuum

Detector Prototype

- 42 squared, 250 µm thin multiclad fibers with individual readout on both ends → 84 channels
- Aligned SiPMs
- Aluminum coating (100 nm)
- Two grid layers (x,y)
- Active area: 10 x 10 cm²
- Pitch: 5 mm

Test in π E5 (MEG Beam Line)

Muon beam @ 28 MeV/c momentum Beam rate $1.2 \times 10^8 \mu^+$ /s (@ 2.2 mA) MEG II prototype electronics

Test in π E5 (MEG Beam Line)

Muon beam @ 28 MeV/c momentum Beam rate $1.2 \times 10^8 \mu^+$ /s (@ 2.2 mA) MEG II prototype electronics

Beam sizes and rates consistent with standard beam monitoring tool

Playing Around With the Beam

Particle Identification

Discrimination by Charge

Particle Identification

Discrimination by Charge

Discrimination by Time-Of-Flight

Conclusion

Measurements with the Large Prototype have shown that the required Mu3e detector performances can be met

Three layers of 250 µm thin, squared, multiclad fibers provide < 1 ns timing resolution at a high detection efficiency

Successful construction of a full beam monitor prototype Minimally invasive grid of 250 µm thin, squared, multiclad fibers provides a fast rate and size measurement of high rate beams and is capable of particle identification

Thank you for your attention

Scintillation Mechanism

Silicon Photomultiplier

APD

Gain vs. V_{bias}

BG suppression factor of accidental overlap Michel positron – Bhabha pair (dominant contribution)

SiPM Characterization

28.02.17

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Back-of-the-envelope calculation for a 30 cm long 250 µm multiclad fiber

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Ingredients for maximum performance (from our experience):

- Fiber end polishing
- Optical isolation of the fiber
- Good fiber-SiPM-alignment

Optical Isolation

Fibers w/o optical isolation are subject to substantial light losses and fiber crosstalk

Light yield (Sr90 measurements)

Fiber crosstalk (Sr90 measurements)

"In situ" light loss measurements

Material	n	Light loss bare	Light loss alum.
Optical cement (BC600)	1.56	40 %	≤ 1 %
Araldite [®]	≈ 1.5	30 %	$\leq 1 \%$
Optical grease (BC630)	1.47	20~%	$\leq 1 \%$

Aluminum Coating

Physical Vapor Deposition

Sputtering

Fiber-SiPM Alignment

Aligned every individual SiPM on the PCB prior to soldering

Overall alignment precision: 250-300 µm

- Groove/ hole precision on plexiglass: 50-100 μm
- Precision Hole: 50 µm
- Pin holes on the SiPM PCB: 150 μm
- SiPM active area w.r.t. packaging: 200 μm

From MC simulations: Shifts up to 300 µm in both transverse directions affordable for 1.3 x 1.3 mm² SiPMs

200

180

160

140

120

100

80

60

40

Squared Fiber Ribbons

- Quality control (blobs, thickness variations, cladding damage, ...)
- Fiber size: 240 x 260 µm² → took special care about fiber orientation (240 µm along beam)

Measured thickness and uniformity across a single fiber layer (256 fibers): 265 ± 5 µm

Fiber Alignment

Fiber alignment both within an individual and among several layers is already at a good level, could most probably be improved by further efforts

- Distances between fibers in y- direction 260-270 µm, consistent with fiber size
- 1st, 2nd and 4th layer aligned within 10-20 μm
- 3rd layer shifted by \approx 55 µm compared to perfect staggering by half a cell

Collimated Sr90 source scans with Large Prototype

Temperature Dependence

Prototype V4.1: Temperature studies with Sr90 source and thermal chamber @ 8°C, 16°C, 24°C, 32°C, SiPM gains equalized on a hardware-level:

Variations in detection efficiency and timing < 10%

Timing Resolution

Single fiber timing resolution (Beam Test @ π M1)

41

Timing Resolution

Single fiber timing resolution (Beam Test @ π M1)

Particle Identification

Discrimination by Charge

Discrimination by time-of-flight

Fiber Beam Monitor – Range Curve

