Realization of a high-performance laser-based mercury magnetometer for neutron EDM experiments

$nEDM \rightarrow new$ source of CP violation $\rightarrow important$ guide to explain the baryogenesis

 \rightarrow Predicted value by the Standard Model:

Khriplovich et al, Physics Letters B 109 (1982)

$$d_{\rm n} \approx 2 \cdot 10^{-32} \,\mathrm{e} \cdot \mathrm{cm}$$

$$f_n = \frac{2}{h} \left(\vec{\mu}_n \cdot \vec{B} + \vec{d}_n \cdot \vec{E} \right)$$

$$\vec{B} \uparrow \downarrow \vec{E}$$

$$\vec{B} \quad \vec{B} \uparrow \downarrow \vec{E}$$

$$\vec{B} \quad \vec{B} \uparrow \uparrow \vec{E}$$

$$d_n = \frac{1}{2E} \left(h \left(f_n^{\uparrow\uparrow} - f_n^{\uparrow\downarrow} \right) + \mu_n \left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow} \right) \right)$$

Correction of magnetic field drifts

The nEDM apparatus

Sybille Komposch

PAUL SCHERRER INSTITUT

UK (pc

nel

Œ

Hg co-magnetometer

PAUL SCHERRER INSTITUT

us

nFL

UK

(pc

Hg Cycle

Sybille Komposch

12.06.2017

us

LPSC

UK

(pc

Magnetic field drift correction

PAUL SCHERRER INSTITUT

12.06.2017

us

nE

LEUVEN

UK

CENSM

(pc

PB

Requirements

Correction:

$$\omega_n^* = \omega_n - \frac{\gamma_n}{\gamma_{Hg}} \omega_{Hg}$$

Error propagation:

$$\Delta \omega_{\rm n}^* = \sqrt{\Delta \omega_{\rm n}^2 + \left(\frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \Delta \omega_{\rm Hg}\right)^2} = \Delta \omega_{\rm n} K$$

Increase of the statistical error due to correction:

$$K = \sqrt{1 + \left(\frac{\Delta\omega_{\rm Hg}/\omega_{\rm Hg}}{\Delta\omega_{\rm n}/\omega_{\rm n}}\right)^2}$$

For nEDM: K < 1.05
$$\Delta \omega_{Hg}$$
 $\Delta \omega_{Hg}$ $\Delta \omega_n$ $\Delta \omega_n / \omega_n = 0.25 \, \text{ppm}$ \longrightarrow $\Delta \omega_{Hg} / \omega_{Hg}$ $0.08 \, \text{ppm}$ Magnetometric resolution: $\Delta B < 80 \, \text{fT}$

118

LEUVE

UK

CSNSA

PB

Performance Hg magnetometer in nEDM

Data taking 2015-2016: 56007 cycles in total

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Preview: n2EDM setup

UCN	guide HV electrode Top chamber Bottom chamber guide Cs magnetometer array					Magnetometric resolution per cycle: $\Delta B = 16 \mathrm{fT}$		
		d chamber	Coating	α	E	N UCN per cycle	$\sigma(d_n)$	$\sigma(d_n)$
		(cm)				after 180s	per day	500 data days
	nEDM	47	dPS, DLC	0.75	11	15000	11×10^{-26}	5.0×10^{-27}
	n2EDM	47	dPE, DLC	0.8	15	100300	2.8×10^{-26}	1.3×10^{-27}
	n2EDM	80	dPE, DLC	0.8	15	292000	1.7 × 10	7.5×10^{-28}
	n2EDM	100	dPE, DLC	0.8	15	400000	1.4×10^{-26}	6.4×10^{-28}

n2EDM - Design status report 2017

Sybille Komposch

12.06.2017

us

nE

LEUVEN

UK

(pc

PB

Sensitivity lamp-based magnetometer

Sensitivity: > 35 fT

Large uncertainty on the output frequency Spectrum:

- Emission light is Doppler-broadend
- Self absorption
- Light cannot be focused / collimated
- ...

→ Improve with UV-laser-system

Proof of principle measurement: 5-fold signal increase (Thesis M. Fertl 2013, ETHZ)

The UV laser

Sybille Komposch

Frequency stabilization

Sybille Komposch

PAUL SCHERRER INSTITUT

Sybille Komposch

Sybille Komposch

PAUL SCHERRER INSTITUT

12.06.2017

us

Sybille Komposch

Position- and Power-stabilization

Sybille Komposch

ER INSTITU

Position- and Power-stabilization

Performance

→ SNDR of $10405\sqrt{\text{Hz}}$

Cramer-Rao-Lower bound:

$$\delta B \ge \frac{\sqrt{12}}{\gamma \frac{a_s}{\rho} T^{3/2}} C(r)$$

$$C(r) = \sqrt{\frac{e^{2/r} - 1}{3r^3 \left(\cosh\left(\frac{2}{r}\right) - 1\right) - 6r}}$$

→ $\delta B = 7.5 \, \text{fT}$

Performance

Conclusion

$$d_n = \frac{1}{2E} \left(h \left(f_n^{\uparrow\uparrow} - f_n^{\uparrow\downarrow} \right) + \mu_n \left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow} \right) \right)$$

- Very good performance of the Hg magnetometer in the nEDM experiment : 99.9% of all nEDM cycles recorded, induced statistical error 2.88% (goal <5%)
- Laser-based Hg magnetometer realized exceeding the performance requirements of n2EDM Magnetometric resolution a factor 2 better (shown: 8fT, goal:<16fT)

Thank You!

and the nEDM collaboration

PAUL SCHERRER INSTITUT

Laser power optimization

Magnetometric resolution calculated with Cramer-Rao Lower Bound

Amplitude

Noise density (Shot noise and technical noise)

Depolarisation by light:

$$T_2 = \frac{1}{\frac{1}{T_i} + \frac{P}{L_P}}$$

Sybille Komposch

Back Up

CP violation and nEDM

$$\mathcal{H} = -d\frac{\vec{s}}{|\vec{s}|}\vec{E} - \mu\frac{\vec{s}}{|\vec{s}|}\vec{B}$$

$$\hat{P}\mathcal{H} = -d\frac{\vec{s}}{|\vec{s}|}(-\vec{E}) - \mu\frac{\vec{s}}{|\vec{s}|}\vec{B} \neq \mathcal{H}$$

$$\hat{T}\mathcal{H} = -d\frac{-\vec{s}}{|\vec{s}|}\vec{E} - \mu\frac{-\vec{s}}{|\vec{s}|}(-\vec{B}) \neq \mathcal{H}$$

PAUL SCHERRER INSTITUT

12.06.2017

us

ST GUTENBERG

ned

LPSC

UK

(pc

PAUL SCHERRER INSTITUT

How to measure the nEDM?

$$N_{\uparrow}(\Delta\nu) = \frac{N_0}{2} \left[1 - \alpha \cos\left(\frac{2\pi\Delta\nu}{\delta\nu}\right) \right]$$
$$\Delta\nu = \nu_{\rm rf} - \nu_{\rm N}$$

$$\delta\nu = \frac{1}{T_{\rm FP} + \frac{4T_{\rm rf}}{\pi}}$$

Sybille Komposch

Sensitivity

	$\sigma(d_{\rm n}) = \frac{\hbar}{2\alpha E T_{\rm FP} \sqrt{N_0}}$						
	d chamber	Coating	α	E	N	$\sigma(d_n)$	$\sigma(d_n)$
	(cm)			$(\mathrm{kV/cm})$	UCN per cycle	$(e \cdot \mathrm{cm})$	$(e \cdot \mathrm{cm})$
					after $180\mathrm{s}$	per day	500 data days
nEDM	47	dPS, DLC	0.75	11	15000	11×10^{-26}	5.0×10^{-27}
n2EDM	47	dPE, DLC	0.8	15	100300	2.8×10^{-26}	1.3×10^{-27}
n2EDM	80	dPE, DLC	0.8	15	292000	1.7×10^{-26}	7.5×10^{-28}
n2EDM	100	dPE, DLC	0.8	15	400000	1.4×10^{-26}	6.4×10^{-28}

Sybille Komposch

PAUL SCHERRER INSTITUT

$$v \approx 30 \,\mathrm{Hz} \, @1 \,\mathrm{\mu T} \quad \tilde{v}_{\mathrm{UCN}} \approx 4 \,\mathrm{m/s} \qquad f_{\mathrm{n}} = \gamma_{\mathrm{n}} \left\langle \left| \vec{B} \right| \right\rangle_{\mathrm{V}}$$

$$f_{\rm Hg} = \frac{\gamma_{\rm Hg}B}{2\pi} \approx 8 \,\mathrm{Hz} \,\,@1\,\mu\mathrm{T} \qquad \tilde{v}_{\rm Hg} \approx 170\,\mathrm{m/s} \qquad \qquad f_{\rm Hg} = \gamma_{\rm Hg} \left|\left\langle \vec{B} \right\rangle_{\rm V}\right|.$$

$$R = \frac{f_{\rm n}}{f_{\rm Hg}} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \mp \frac{h}{B_0} \frac{\partial B}{\partial z} + \frac{\langle B_T^2 \rangle}{2B_z^2} \pm \left(\frac{f_{\rm Earth}}{f_{\rm n}} + \frac{f_{\rm Earth}}{f_{\rm Hg}} \right) \sin(\lambda) \right)$$

$$\delta f_{\rm L} = \frac{\gamma^2 D^2}{32\pi c^2} \frac{\partial B_0}{\partial z} E \qquad \text{(non adiabatic)}$$
$$\delta f_{\rm L} = \frac{v_{xy}^2}{4\pi B_0^2 c^2} \frac{\partial B_0}{\partial z} E \qquad \text{(adiabatic)},$$

GPE:

Sybille Komposch

GPE for higher orders

General expression valid for any field distribution and volume geometry: *Pignol, G. ; Roccia, S. Phys. Rev. A 85 (2012)*

$$d_{\text{false}} = \frac{\hbar\pi}{E} \Delta f(E) = \frac{\gamma^2 \hbar\pi}{2c^2} \langle xB_x + yB_y \rangle$$

Magnetic field parametrization:

$$\vec{B}(\vec{r}) = \sum_{l,m} G_{l,m} \begin{pmatrix} \Pi_{x,l,m}(\vec{r}) \\ \Pi_{y,l,m}(\vec{r}) \\ \Pi_{z,l,m}(\vec{r}) \end{pmatrix}$$

Harmonic polynomials in x,y,z of degree I

l	m	$\langle xB_x + yB_y \rangle$	$G_{max}(5 \cdot 10^{-27} \mathrm{e\cdot cm})$
1	0	$-\frac{1}{4}r^2G$	$0.57\mathrm{pT/cm}$
3	0	$\frac{1}{16}r^2(2r^2-H^2)G$	$2.4 \cdot 10^{-3} \mathrm{pT/cm^3}$
5	0	$-\frac{1}{102}r^2(15r^4+3H^4-20H^2r^2)G$	$8.92 \cdot 10^{-6} \mathrm{pT/cm^5}$

nEDM geometry: H=12cm , r=23.5cm