

Vacuum system basics for Instrument Engineers

ISNIE Summer School 2018

A word from our sponsor ISNIE ;)

How this course works ... maybe

To increase the **awareness** of engineers to the importance of considering the engineering constraints and **best practices** related vacuum systems as part of the design of neutron instruments.

....such that, designers are aware of **important issues**, may **avoid commonly occurring mistakes**, and **communicate effectively with system experts**,

....in order to produce neutron instruments which provide **superior scientific capability** at **lower installation and operational costs** (through improved maintainability). Our approach to learning in this course

EUROPEAN SPALLATION SOURCE

Make it real And work from there

- Relevance
- Interaction
- Engagement

5

In each implementation we will consider

Installation specific

System Requirements

- Vacuum level
- Pumped volume
- Cycles

Constraints

- Radiation hardness
- Serviceability

Installation specific

Analysis

- Techniques
- Theory

Solutions

- Equipment choice
- Packaging
- Sealing

EUROPEAN SPALLATION

Game plan

Part 1 Introduction (I 30mn	ain)			
 Context 	Part	2 (Marcello 8	R	
 Case studies 	Lotha Appr Vacu	ar) 45mn + 3 oach & Solut um technolo	omn ions gy	
			Part (Mar Take	3 Wrap up cello) 15mn away

Neutron instruments an introduction (?)

A typical neutron scattering instrument ...

EUROPEAN

SPALLATION SOURCE

Building blocks of neutron scattering instruments

- Neutron Source
- Neutron transport
- Neutron conditioning
- Sample exposure
- Detector
- Shielding
- Control
- Data collection
- Data Treatment

EUROPEAN

SOURCE

There to be used High performance + high maintainability

Complex

Installed

systems

EUROPEAN

Limited access opportunities

A challenging environment to operate equipment

Hazardous

environment

A engineering balancing act

EUROPEAN SPALLATION SOURCE

Construction cost / Operating cost Scientific Performance / Availability

- Vacuum systems represent
 - 5-10% of the construction cost
 - But also 5-10% of maintenance costs

Down time

- Issues with vacuum are • the #2 or #3 most frequent 'cause' of instrument shutdown.
- A significant part of downtime

Powercut, 2%

Why vacuum?

Because ...

Increased instrument Performance

- Reduced transmission losses
 - Source Sample
 - Sample Detector

Increased Safety

Reduced air activation

Increased operability

Avoid corrosion

Reality Case studies

Typical vacuum system implementations

EUROPEAN SPALLATION SOURCE

Instrument vacuum systems Case study – Neutron guide systems

Neutron guides What is it ?

- Function
 - Beam transport
 - Energy selection
- How do they operate ?
 reflection of neutron beam
- Why vacuum ?
 - Neutron transmission

EUROPEAN SPALLATION SOURCE

Neutron guides What is it ?

EUROPEAN SPALLATION SOURCE

Neutron guides

Details

Examples A range of requirements and challenges for vacuum systems

EUROPEAN SPALLATION SOURCE

Neutron guide system	
ILL / H14	

1e10-1	mbar
5	m3
6 months	
1 day	

Steel housing Painted surfaces Glass neutron guide Rubber seals

Radiation level Maintenance period

Component type

High 5 years

Particularity Housing has a section of 100cm2 and a length of 100m

Vacuum systems case study - high speed neutron choppers

ILL IN5 CRD

26

Neutron chopper What is it ?

- Function
 - Pulse shaping
 - Energy selection
- How do they operate ?
 Interception of neutron bear
- Why vacuum ?
 - Neutron transmission
 - Air friction

Typical vacuum requirements High speed choppers

EUROPEAN SPALLATION SOURCE

Instrument vacuum systems

Criteria	HS Choppers
Vacuum level	Good
Pumped volume	Small
Cycle time	V.Slow
Radiation hardness	High
Servicability	Low

Component type	Sample e	Sample environment				
Example						
Operating vacuum level	5e10-6	mbar				
Pumped volume	0.1	m3				
Cycle time	1 day					
Pump down	1 hour					
Materials	Steel hou	using				

Radiation level Maintenance period High months

aluminium

Instrument vacuum systems Case study – Sample environment

Sample environments What is it ?

EUROPEAN SPALLATION SOURCE

- Function
 - Environmental conditioning
- How do they operate ?
 Various !
- Why vacuum ?
 - Neutron transmission
 - Heat insulation
- Access
 - Good

- Cyrostat
- Furnace
- Cryomagnet
- Pressure cell

....

30

Sample environment Installation context

- Where are they located in a beamline
- What is the installation context
- What are radiation levels
- How easy it is to access
- Why are they operating under vacuum?
- What are typical vacuum requirements for this type of system

EUROPEAN SPALLATION SOURCE

Typical vacuum requirements Sample environment

EUROPEAN SPALLATION SOURCE

Criteria	Sample environment
Vacuum level	Very good
Pumped volume	V.Small
Cycle time	Fast
Radiation hardness	High
Servicability	High

Component type Example

Operating vacuum level Pumped volume Cycle time Pump down

Materials

High speed neutron chopper ILL / IN5 CRD M-Chopper

5e10-4 mbar 0,1 m3 6 months 1 day

Steel housing Painted surfaces Glass neutron guide Aluminium rotor

Radiation level Maintenance period High 5 years

Instrument vacuum systems Case study – Flight vessel

Flight vessels What is it ?

- Function

 Avoid air scattering
- How do they operate ?
 Evacuate flight path
- Why vacuum ?
 - Neutron transmission
- Access
 - Poor

Flight vessel Issues

Typical vacuum requirements Flight vessel

EUROPEAN SPALLATION SOURCE

Criteria	Detector vesse
Vacuum level	Good
Pumped volume	V.Large
Cycle time	Moderate
Radiation hardness	Low
Servicability	Moderate

Instrument vacuum systems		
Component type	Flight vessel	
Example		
Operating vacuum level	1e10-3 > 10e-6 ?	mbar
Pumped volume	30m3	m3
Cycle time	1 month	
Pump down	1 day	
Materials	Steel	
	aluminium	
	boron carbide	
	rubber	
	polyethene	
Radiation level	High	
Maintenance period	months	

A range of requirements and challenges for vacuum systems

EUROPEAN SPALLATION SOURCE

Criteria	HS Choppers	Neutron Guide	Detector vesse	Sample environment	
Vacuum level	Good	Poor	Good	Very good	
Pumped volume	Small	Moderate	V.Large	V.Small	
Cycle time	V.Slow	V.Slow	Moderate	Fast	
Radiation hardness	High	High/Mod	Low	High	
Servicability	Low	V.Low	Moderate	High	
Criteria Vacuum level Pumped volume Cycle time Radiation hardness Servicability	Good Small V.Slow High Low	Poor Moderate V.Slow High/Mod V.Low	Good V.Large Moderate Low	Very good V.Small Fast High High	

Technical challenges Radiation

Activation & Damage

Neutron Irradiation Damage & Activation

	Contact dose [µSv/h]							
Delay following beam shutdown	Material	1h	1 day	3 days	7 days	1 year		
Guide upstream of the 1st chopper	Aluminium (5083)	1000	50	<3	থ	3		
Guide downstream	Aluminium ?	40		<3	<0.5	<0.5		
Collimator (streaming)	Copper	1000	200	<25	<25	<25		
Chopper (no steel)	Aluminium housing / Alu rotor		200	<25	3	3		
Heavy shutter	Tungsten / no housing		1000	500	<100	<100		
T _o chopper (Tungsten hammer)	Tungsten / steel housing		1000	500	<100	<100		
Inside rear bunker wall (with lead)	Lead /PolyConcrete/ Steel		<3	<3	4	<0.5		

	Whole body dose @ about 20 pm [uSu/h]							
Delay following beam shutdown	Material	1h	1 day	3 days	7 days	1 year		
Guide upstream of the 1st chopper	Aluminium (5083)	200	3	<0.5	<0.5	<0.5		
Guide downstream	Aluminium ?	<25	3	< 0.5	<0.5	<0.5		
Collimator (streaming)	Copper	<50	<25	<3	4	<3		
Chopper (no steel)	Aluminium housing / Alu rotor	300	<50	<3	<0.5	< 0.5		
Heavy shutter	Tungsten / no housing	1000	100	<50	<25	<25		
T _o chopper (Tungsten hammer)	Tungsten / steel housing	1000	100	<50	<25	<25		
Inside rear bunker wall (with lead)	Lead /PolyConcrete/ Steel	<3	<3	<3	<3	< 0.5		

40

Activation Material

Levers to pull

Design •

- Material choice
- ... remote handling

				Contact Dose				-		
	٧	Vh <mark>ole bodv d</mark>	ose @ abou	20 cm [40	/k]					
Delay following beam shutdown	Material	1h	1 day	3 days	7 days	1 year		V.		
Guide upstream of the 1st chopper	Aluminium (5083)	200		<0.5	<0.5	<0.5				
Guide downstream	Aluminium ?	<25		< 0.5	<0.5	<0.5				
Collimator (streaming)	Copper	<50	<25	3	3	<3	10	15	20	25
Chopper (no steel)	Aluminium housing / Alu rotor	300	<50	3	< 0.5	<0.5				
Heavy shutter	Tungsten / no housing	1000	100	<50	<25	<25			lown	
T _o chopper (Tungsten hammer)	Tungsten / steel housing	1000	100	<50	<25	<25				
Inside rear bunker wall (with lead)	Lead /PolyConcrete/ Steel	<3	3	4	S	<0.5				

10

10²

10¹

Rate (uSv/h) / 20x20 cm2

30

35

Damage Hardened components

EUROPEAN SPALLATION SOURCE

Damage material options

Thank you for your attention !

