

Design of a High-Speed Disc Chopper Test Rig

Ben Hicks

Mechanical Design Engineer - ISIS

ben.hicks@stfc.ac.uk

Overview

- Background
- Scope & Requirements
- Initial Concepts
- Project Plan
- Design Considerations
- Analysis
- Final Design

The ISIS Facility

- Oxfordshire, UK
- 1985 Facility Opened
- 2008 TS2 opened
- Pulsed Spallation Source
- Target Stations
 - TS1 160kW 40Hz
 - TS2 40kW 10Hz

The ISIS Facility

- 30 Operational Beamlines
- 350 staff members
 - 24 Instrument Design Engineers

Background

- New FREIA instrument
- ESS require larger disc choppers than any at ISIS
- Currently no facility for over-speed testing of disc choppers (balancers, acoustic chambers)
- Use analysis and past experience

Disc Chopper

- Disc choppers allow the flow of selected neutrons, and absorb all others.
- Aluminium alloy disc potted with an area of neutron absorbing B₄C resin.
- Rotating at up to 50hz 3000rpm.
- Synchronised to the beam pulses.

Requirements

Requirement	Essential	Desired
Capable of testing chopper discs of varying size	Up to 1.3 metre diameter	Up to 1.5 metre diameter
Fits within space allocated for rig	AxBxC m of room	Possible to change motors/discs/fittings with ease of movement in space
Parts of rig needing moving capable of	Proposed new crane limit	
being lifted by crane	2 ton	
Mechanism for opening rig to change		Can be performed with minimal crane
chopper discs and motor		assistance
Double disc testing		
Service life		10 years
Vacuum	10 ⁻³ mbar	
Door	Contain any catastrophic failure	Double hinge or craned in. Operable by 1 person
Mechanism to put disc in place – crane	Capable of placing 1.3-1.5 meter (20-50 kg) chopper disc on chamber end easily	
Rig secured to floor	Bolted directly to ground to negate dynamics/vibration effects	
Adaptor to connect motor bearing system	SKF G5 adaptor	Other adaptors to be manufactured to accommodate a variety of motors
Modular design	Rig can be disassembled and rebuilt in new location.	
Ports for monitoring of discs	Power feedthroughs for thermocouples and speed monitors	Possibility of adding a viewport
		Facilities Council

Location

Figure 1: Proposed location of test rig.

Figure 2: Floor dimensions of bunker, in mm, to house the rig (manhole cover and cable trench cover shown)

Initial Concepts

Project Plan

- March 2017 Scope & Stakeholders established
- Concept designs
- PDR End of April
- Develop design based on PDR
- CDR Start of July
- Create drawings *Largest deviation from plan*
- October 2017 FDR held and Progress document written

Design Considerations

Ribs

Hinge System

Guide Rods

Access Holes

Design Considerations

Screw Plates

Adaptor Hole

Baffle Plate connection

Vacuum Ports

Analysis

- Analysis and stress calculations were performed on aspects of the test rig
 - Deformation of door
 - Deformation of chamber
- Led to changes in design
 - Castor added to bottom of door so it can close
 - Hinge system redesigned to be more rigid

Hinge System Analysis

- Ideally deformation less than ~0.1 mm so door can close easily
- After analysis and changing of parameters decided to add a jacking castor
- Reduced deformation and easier operation of door

Pressure Vessel

- Deformation of fixed plate under pressure
- Hand calculations completed
- Deformation of ~0.45 mm
- Regular shape of deformation important

Further calculations

- Stress in bolts
- Lifting points
- Chamber flanges
- Impact analysis operations highlighted the importance of safety

Modular Final Design

Next Steps

- Drawings have begun and completed those for the frame
- Still need for disc test rig for in-house testing
- Ballistic modelling of failure

Any Questions?

