(Liquified) Noble gas calorimetry and the MEG II LXe calorimeter

Toshiyuki Iwamoto ICEPP, the University of Tokyo

LTP Seminar, 9 October 2017

Outline

- Introduction
 - Calorimetry
 - (Liquefied) Noble gas / Liquid xenon
- MEG II liquid xenon detector
- Other applications

Calorimetry

- Calorimetry is a widespread technique in particle physics
 - Detection of particles, measurements of their properties, through total absorption in a block of matter, the calorimeter
 - In the absorption, almost all particle's energy is eventually converted to heat, hence the term calorimeter
 - instrumented targets (neutrino experiments/proton decay /cosmic ray detectors), shower counters, 4π detectors for collider experiments
- Calorimetry makes use of various detection mechanisms
 - Scintillation
 - Cherenkov radiation
 - Ionization
 - Cryogenic phenomena

Calorimetry

- Measure charged + neutral particles
- Performance of calorimeters improves with energy and is constant over 4π

- Obtain information fast (<100ns feasible)
 - recognize and select interesting events in real time (trigger)

Electromagnetic shower

Dominant processes at high energies (E>few MeV) :

5

Photons : Pair production

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

Mean free path I = 1/µ

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 \cdot E \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$
$$\Rightarrow E = E_0 e^{-x/X_0}$$

Liquefied noble gas / Liquid xenon

Basic Properties of Liquified Noble Gases

- Dense and homogeneous : good for large detectors
- Do not attach electrons, heavier noble gases give high electron mobility (ionization signal)
- Easy to purify
- Inert, not flammable, very good dielectric
- High scintillation yields

- LXe
 - High density (3g/cm³), short radiation length
 - Easy cryogenics (165K)
 - Short scintillation wavelength (175nm)
 - Very high resolution
 - Fast (~ns) response
 - Expensive (~10 times higher than Kr)

	Liquid density (g/cc)	Boiling point at 1 bar (K)	Electron mobility (cm ² /Vs)	Scintillation wavelength (nm)	Scintillation yield (photons/MeV)	Long-lived radioactive isotopes	Triplet molecule lifetime (µs)
LHe	0.145	4.2	low	80	19,000	none	13,000,000
LNe	1.2	27.1	low	78	30,000	none	15
LAr	1.4	87.3	400	125	40,000	³⁹ Ar, ⁴² Ar	1.6
LKr	2.4	120	1200	150	25,000	⁸¹ Kr, ⁸⁵ Kr	0.09
LXe	3.0	165	2200	175	42,000	¹³⁶ Xe	0.03

Scintillation and Ionization

- Charged particle produces both atomic excitations and ionization
- Atomic excitations react with surrounding liquid to form excimers, which fluoresce
 - Transparent for its scintillation photons (no self absorption)
- Recombining charge also produces excimers, which fluoresce
- Excitation/Ionization ratio depends on the incident particles
- VsUV light detected by photo sensors, ionization by TPC etc.

Scintillation Pulse Shape

- Two decay components from de-excitation of singlet and triplet states of dimers
- Recombination speed depends on dE/dx (very fast by alpha)
- LXe: fastest of all noble liquid scintillators
 - 4ns/22ns for alpha
 - 45ns for e/γ (recombination)

Scintillation signal

Particle ID possible by pulse shape

Scintillation calorimeter

- Photo-sensors for reading scintillation
 - Scintillation signal is faster than ionization
 - More expensive than reading charge (in general)
- Scintillation wavelength is shorter than other scintillators
 - Special sensors or wavelength shifter are needed

Light Collection in Liquid Xenon

- VUV sensitive SiPMs (MEG + Hamamatsu)
- Cryogenic PMTs with fused silica windows
- Wavelength shifter (TPB etc.) deposited on PMT, SiPM or APD
- WLS coated plated in front of photo-sensors
- WLS coated on reflective detector wall
- Light guide (Acrylic bar coated with WLS) coupled to SiPM
- Large area picosecond photo-detector (LAPPD)
- Quartz photon intensifying detector (QUPID)

Light attenuation by impurities

 Impurities (water, O₂, ...) dissolved in the liquid absorb UV photons, reducing the light

How to remove impurities?

- Evacuation of the cryostat
 - If there are PMTs etc. we can not bake it.
- Gaseous purification
 - Heated Metal Getter Purifier
 - Zirconium metal forms irreversible chemical bonds
 - Almost all impurities (except inert gases) can be removed!
 - Slow (~4L/h)
- Liquid purification
 - Molecular sieves (Zeolites)
 - Very small holes can absorb mainly water
 - fast (~40L/h)

MEG II Liquid Xenon Detector

MEG experiment

- Lepton flavour violating muon decay (μ+→e+γ) search
 experiment
- 3x10⁷µ⁺/s beam rate at PSI
- Upper limit of the branching ratio of $\mu^+ \rightarrow e^+\gamma 4.2 \times 10^{-13}$ (2016)

Back-to back Coincident $E_e=E_{\gamma}=52.8MeV$

Background

Accidental e+ and y, RMD

$$N_{\rm acc} \propto (R_{\mu})^2 \times T \times (\Delta E_{\gamma})^2 \times \Delta E_e \times (\Delta \Theta_{e\gamma})^2 \times \Delta t_{e\gamma}$$

All the detector resolutions important to
reduce the accidental background

MEG LXe detector

- The largest (900 liters) LXe detector (at least in 2008)
 - Pioneer experiment for large liquid xenon detectors
- 846 VUV sensitive PMTs directly detect scintillation photons (QExCE~16% for 175nm photons)
- Excellent energy, position and time resolutions
- Pileup-identification capable by using waveform and charge distribution

Reconstruction

- Position
 - light distribution on gamma incident face

$$\chi_{\text{pos}}^2 = \sum_{i} \frac{N_{pho,i} - c \times \Omega_i(x_{\gamma}, y_{\gamma}, z_{\gamma})}{\sigma_{pho,i}(N_{pho,i})}$$

- Energy
 - Charge sum of all photo sensors
- Timing
 - Arrival time of scintillation light more than 50 photoelectrons

$$\chi^2_{\text{time}} = \sum_i \frac{(t_{hit,i} - t_{LXe})^2}{\sigma_{t,i}(N_{pe})^2}$$

Calibration 9MeV y

55MeV y

Energy (MeV)

Timing resolution

Different methods to understand the detector

Calorimeter performance limitation

20

- Resolution of shallow events (~40%) is worse because of large position dependence of photon-collection efficiency
- Lower energy tail due to energy loss of γ before entering LXe and energy leaks from the inner or lateral faces

Energy leaks from LXe

Energy loss before LXe

MEG II LXe detector

900L LXe (cryostat reused)

- Finer granularity for γ incident face
 - 216 2" diameter PMT
 → 4092 12x12mm² MPPCs
- 668 PMTs for top/bottom/lateral faces
- Wider incident face
- Lateral PMT slant angle

Present

Upgraded

Expected performance

- Finer granularity, better uniformity, less shower leakage
- Less material budget (detection efficiency $65\% \rightarrow 70\%$)
- Timing resolution 67ps → 50-70ps

0.2

Energy (MeV)

New SiPM development

2" diameter PMT (Hamamatsu, R9869)

•

- working in LXe, developed for MEG in collaboration with Hamamatsu. QE ~ 15%
- SiPM is a good candidate to replace PMT
 - 1p.e. peak resolution, insensitive to magnetic field, thin, lower bias voltage etc.
- MPPC for MEG II (Hamamatsu, S10943-4372)
 - MPPC is a kind of SiPM, produced by Hamamatsu
 - Four 6x6 mm² chips, ceramic package, 50µm pixel pitch, VUVsensitive, quartz window in front of SiPM, metal quench resistor

Large Area SiPM

- Large area SiPM in general has
 - large capacitance, long signal tail
 - large dark rate
- Our solution (to make a single ch. 12x12mm² MPPC)
 - Segmented into 4 chips, which are connected in series for signal readout line, in parallel for voltage supply line
 - Avoid large capacitance, manageable signal tail is realized (<50ns)
 - Common bias voltage (~65V)
 - Dark noise suppressed at low temperature
 - Single photoelectron peak can be resolved

Setup for R&D

- 2L LXe test chamber at Paul Scherrer Institute (PSI) in Switzerland
 - Small setup to develop new SiPM quickly
- Basic properties of SiPM
 - PDE measured with alpha source ²⁴¹Am with nonreflective coating
 - Single photoelectron peak
 - LED light for gain, cross-talk, after-pulse

Performance

- Vover ~ 7V, w/ series connection
- Single photoelectron peak resolved
- Gain: 8x10⁵, PDE>~15%, Signal decay time: 30ns
- Energy resolution still improves at large number photoelectron region

Charge distribution using LED

Signal readout scheme

- MPPCs plugged on assembly PCB
 - Series connection for four chips on PCB
- MPPC signal transmitted over long cable (11-13.4m) w/o amplifier
- High density PCB-based feedthrough
 - PCB with coaxial-like signal line, 50Ω impedance, high noise immunity
 - High density 72ch x 6 PCB x 10 flanges
- Waveform digitizer
 - Fully integrated DAQ board including bias supply for SiPM, waveform digitizer, FPGA-based trigger (WaveDREAM)

Feed<u>t</u>hrough

Coaxial cable (8.5m)

Detector construction

- All assembly PCB + MPPCs installed into the LXe detector
- MPPC position is measured by 3D
 Faro arm scanner
- SiPM current with LED light is checked by each row when cable connection is carried out

 PMTs are re-used. Top/bottom/ lateral PMT holders are modified for better uniformity.

360° camera (Ricoh theta S)

Cryogenics

- Increase cooling power
 - GM refrigerator (AL300, CRYOMECH, 430W@165K) connected to the detector via thermal insulated transfer tube
 - pulse tube cryocooler reused (200W)
- The system is working already in detector pre-cooling with gaseous xenon
- Then, we started liquid xenon transfer from 1000L liquid storage tank to the LXe detector

Liquid transfer

Viewed by USB camera : LifeGam HD-5000

Liquid transfer

Liquid level is around half

Liquid transfer

Liquid level is close to the USB camera

Position monitoring

MPPC position was scanned with laser after installation \$\prescript{1}\$

However, inner cryostat deforms by heat shrink and LXe load.

→ Monitor the movement by position sensors

X-ray survey

Position of the stage is measured by laser and monitored by laser and bubble level + camera.

Purification

Sum of # of photon on all readout PMTs. 24000 **MEG I equivalent** 22000 20000 18000 ¥¥ 16000 ** 14000 12000 10000 8000 molecular sieves 6000 regeneration 4000 LXe purification 2000 date 07/2308/2209/21

Prospects

- November: 17.6MeV γ with CW
- December: Muon beam with TC, RDC
- 2018 Engineering run + physics run

Other experiments

- Dark matter experiment
 - High stopping power, active volume is self-shielding

- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization
- Dual-phase (liquid/gaseous) detector uses both scintillation/ionization
- XENON100, LUX, PANDAX-II, Xenon1t (next generation experiments: XENONnT, LZ, DARWIN)
- Double beta decay experiment
 - · EXO
- Medical application
 - Single photon emission computed tomography (SPECT) / Positron emission tomography (PED)

0vββ in ¹³⁶Xe

¹³⁶Xe → ¹³⁶Ba⁺⁺ + 2e⁻, Q-value 2457.83±0.37 keV

Dark matter application

S2/S1 ratio depends on particles, used for background rejection This type of readout can not be used for calorimeter for high-rate experiments (Drift time O(mm/μs) can be too long if the detector is large)

The XENON-Program @ LNGS

Gran Sasso, Italy (3600 mwe)

Important Important Important	<section-header></section-header>	<section-header></section-header>	<section-header></section-header>	<section-header></section-header>
Period	2005-2007	2008-2016	2012-2018	2019-2023
Total mass	25 kg	161 kg	3200 kg	~8000 kg
Drift length	15 cm	30 cm	100 cm	144 cm
Status	Completed (2007)	Completed (2016)	Running	Construction
σ _{SI} limit (@50 GeV/c²)	$8.8 \times 10^{-44} \text{ cm}^2$	$1.1 \times 10^{-45} \text{ cm}^2$	$1.6 \times 10^{-47} \text{ cm}^2$ (2018)	$1.6 \times 10^{-48} \text{ cm}^2$ (2023)

Dark matter search

Summary

- Calorimetry is widespread technique in particle physics
- Liquefied noble gases have many good features to get good energy/timing/position resolutions
- MEG II liquid xenon detector uses large area VUVsensitive SiPM on the γ incident face. The detector operation is started.
- Next year, MEG II experiment will start engineering run and physics run.

Backup

Particle	Energy	LET, MeV/(g·cm ²)	W_s , eV (LAr)	W _s , eV (LXe)
No quenching; W_s^{min}	_	_	19.5 ± 1.0 ^{<i>a</i>)} 19.8 ^{<i>b</i>)} 18.4 ^{<i>b</i>)}	13.8 ± 0.9^{a} 13.0^{b} 14.7 ± 1.5^{c} 13.45 ± 0.29^{d} 13.7 ± 0.2^{e}
Relativistic electrons	1 MeV	≈1	25.1 ± 2.5 °) 24.4 ^{a)}	$23.7 \pm 2.4 \ {}^{c)}$ $21.6 \ {}^{a)}$ $22.5 \pm 2.5 \ {}^{f)}$ $< 35 \ {}^{g)}$ $42 \pm 6 \ {}^{h)}$ $67 \pm 22 \ {}^{i)}$
Low energy electrons	20 – 100 keV	~7 to 2	_	$18.3 \pm 1.5 {}^{f)}$ $14.2 {}^{j)}$ $12.7 \pm 1.3 {}^{k)}$ $29.6 \pm 1.8 {}^{l)}$
α-particles	≈ 5 MeV	\sim 4 \times 10 ²	$27.1^{a)}$ $27.5 \pm 2.8^{c)}$	17.9^{a} 19.6 ± 2.0^{c} 16.3 ± 0.3^{m} 17.1 ± 1.4^{f} 39.2^{n}
Relativistic heavy ions	$\sim 1 \text{ GeV/amu}$	$\sim 10^2$ to 10^3	19.4 ±2.05 ^c)	14.7 ± 1.5 ^{c)}
Nuclear recoils*	60 keV	$2.9/4.0 \times 10^{3}$	$\sim 100^{p}$ (exp) $\sim 90^{q}$ (theor)	$95 \pm 20^{(r)}$ (exp) ~77 ^(s) (theor)
	20 keV	$2.6/2.7 \times 10^{3}$	$\sim 100^{p}$ (exp) $\sim 105^{q}$ (theor)	$110 \pm 20^{(r)}$ (exp) ~ 86 ^(s) (theor)
	5 keV	$1.9/1.5 \times 10^{3}$	$\sim 100^{p}$ (exp) $\sim 140^{q}$ (theor)	$160 \pm 40^{(r)}$ (exp)
Fission fragments	$\sim 1 \text{ MeV/amu}$	$\sim 10^4$	44110^{t}	$60^{(u)}$

Table 1. Energy expended per scintillation photon for different particles.

arXiv:1207.2293

LXe energy vs BGO energy

Energy scale uncertainty

Pileup

- At 3x10⁷µ⁺/s beam rate, 15% of triggered events suffer from pile-up.
- Light distribution
- Waveform peak search
- χ²/NDF distribution in time reconstruction

Analysis efficiency : 98%

In physics run

- time sideband data in physics run are used to study γ-ray background spectra
- Radiative muon decay events μ→evvγ are used to study timing resolution

Xenon for dark matter

- Large mass number A (131) (Interaction cross section ∝ A²)
- 50% odd isotopes (¹²⁹Xe, ¹³¹Xe) for Spin-Dependent interactions
- Kr can be reduced to ppt levels
- High stopping power, i.e. active volume is self-shielding
- Efficient scintillator (178 nm)
- Scalable to large target masses
- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

Electron emitted from liquid to gas by electric field

Figure 17. Illustration of the electron emission process in double-phase xenon; the figure shows the potential energy of excess electrons near the liquid-gas interface calculated from the model in [206], with different electric field strengths indicated for the liquid.

 Electrolumin escence in the gas phase

Figure 18. Probability of electron emission from liquid to gas as a function of electric field. Re-drawn from data in [207].

TPC

- EXO-200 consists of a radiopure TPC filled with enriched LXe (80.6%)
- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA
- High-voltage applied between cathode and anodes (opposite ends)
- Two measurements of energy deposited in event
 - Scintillation light (178 nm), by large avalanche photo-diodes (APDs)
 - Ionization charge, by 2 wire grids (induction and collection)

Energy

- Rejection of α particles (vs β/γ) using light/charge ratio
- Using anti-correlation between charge and scintillation response
 - "Rotated" energy provides optimal resolution in the energy of interest

Scintillation vs. ionization, ²²⁸Th calibration:

Reconstructed energy, ²²⁸Th calibration:

Light/charge ratio depends on electric field

Position monitoring

(~1.6x10⁻³mm/m/K heat shrink to bottom direction)

bottom middle.

X-ray survey

Scan was performed in two directions in 1mm step.

Event rate increase was successfully observed around X-ray irradiated region. Analysis is ongoing.