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Cosmology
huge range of energy/density/timescales

observables(/fossils) :

1. baryon asymmetry ( ?T >∼ mW ) (BSM)

2. DM relic abundance (BSM)

3. abundance of light nuclei (D,3 He,4 He,7 Li formed at T <∼ MeV) (SM)

4. CMB (Tγ ∼ eV) (SM+DM)

5. (structure formation (mat-rad equality → now)) (need DM)

exotics should be consistent with this data = explain/not-disturb (at

creation+after) ...how to know how exotics affect these observables ?
idea 1 :

how many exotics present ? + what do they do ?
oops : thats for particles... axion DM = field ? what about phase transitions ?
ask the Path Integral (= black box for theorists that sums quantum mechanical

amplitudes)

Reply : at Leading Order, use Einstein’sE for GR, Klein-Gordon for classical
scalar, “Boltzmann” for particles

2 / 69



Ask the Delphic Oracle (= path integral)

Suppose add some feebly-interacting exotic to the Lagrangian...
What are relevant variables and equations to describe evolution ?

◮ variables = expectation values of n-pt functions
〈φ〉 ≡ φcl ↔ classical field for bosons(...misalignment axions)

〈φ(x1)φ(x2)〉 ↔ (propagator) + distribution of particles f (x , p)
neglect 3+pt fns, because exotics feebly coupled

◮ get Eqns of motion for expectation values (in Closed Time Path formulation)

feebly interacting ⇒ at Leading Order, use classical saddle pt
Einsteins Eqns with Tµν(acl , f ) (+ quantum corrections)

Klein Gordon in curved space, (+ quantum corrections)

Schwinger-Dyson in curved space for f ...≈ Boltzmann Eqns ( ?)

⇒leading order is simple : Einsteins Eqns, Klein Gordon, and Boltzmann...
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the QCD Axion as Cold Dark Matter

ma
<∼ mν , but COLD Dark Matter ?

Recall : KSVZ model = a is phase if gauge-singlet complex scalar Φ
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Lets compare axion vs WIMP as CDM ?

WIMP = simple
(particles = use Bolzmann)

in equilibrium at T >∼ mWIMP

then “freezout”↔ relic density.
One epoch/calculation
≃ the WIMP miracle !
(can complexify...)

then LSS people do N-body...

(QCD) axion...relevant at many scales :
1-“PQ”PT : born massless when Φ gets
a vev ∼ 1011 GeV : pre/post inflation ?
...classical/quantum field eqns,top.deffects...

2-QCDPT :acquires mass = becomes
DM...what mass+ turn-on ? field or
particles ? ?
3-ρmat ∼ ρrad ( ρmat

ρmat
starts to grow,

T ∼3eV) : what is short-distance fluc-
tuation spectrum of axion field/par-
ticles ?
4-growing fluctuations teq → t0 :
Do axions grow stucture like WIMPs ?
And what does axion DM look like in
our galaxy today ?
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1) Which first : inflation or the birth of the axion ?

y

V(r)

x

1. IF first the axion is born....
Φ → fe ia/f (f ∼ 1011 GeV)

|Φ| and new quarks heavy, a massless

2. ...then inflation
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1) Which first : inflation or the birth of the axion ?

y

V(r)

x

1. IF first the axion is born....
Φ → fe ia/f (f ∼ 1011 GeV)

|Φ| and new quarks heavy, a massless

2. ...then inflation
a constant across U, develops classical fluctuations

δa
a
∼ HI

2πf Mukanov PhysRep

(WHAT? quantum fluctuations, expanded beyond causally
connected volume...are classical when re-enter causally connected V after inflation)
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1) Which first : inflation or the birth of the axion ?

y

V(r)

x

1. IF first the axion is born....
Φ → fe ia/f (f ∼ 1011 GeV)

|Φ| and new quarks heavy, a massless

2. ...then inflation
a constant across U, develops classical fluctuations

δa
a
∼ HI

2πf Mukanov PhysRep

different from inflaton ⇔ isocurvature density fluctuations
Planck : ⇒ HI

<∼ 107
√
f /1012 GeV

? or non-canonical kin.terms for a ? ...

WantzShellard
HanannHRW

FolkertsCristianoRedondo

...

3. Laaaater : QCD Phase Transition (T ∼ 200 MeV)
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1) If inflation first...

y

x

1. In the beginning, there was inflation
avoids CMB bounds on isocurvature fluctuations :

2. Then the axion is born
Φ → fe ia/f

∗ a massless, random −πf ≤ a0 ≤ πf in each horizon
〈a2

0〉U today ∼ π2f 2/3
∗ ...one string/horizon

...
Eqns of Motion for massless field in FRW smooth field on horizon scale

string network “should” scale :
confirm with string network on lattice, but need latticespacing < 1/f and box > 1/H...

Hiramatsu etal
Klaer+Moore

3. Laaaater : QCD Phase Transition (T ∼ 200 MeV)
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PQ scale f for DM axions vs HI (expansion rate during inflation)

Wantz thesis, with Shellard
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2) At the QCD PT :the axion mass turns on

QCD Phase Transition (T ∼ 200 MeV) : (tilt mexican hat)

ma(t) : 0 → fπmπ/f ⇔ V (a) ≈ f 2
PQm

2
a [1− cos(a/fPQ)] ≈

m2
a

2
a2−m2

a

8f 2
a4 + ...

∗ ... at H < ma, “misaligned” axion field starts oscillating around the minimum
∗ scalar field eqns in FRW : energy density ≃ m2

a〈a0〉2/R3(t)
( higher now, for smaller mass ⇒ correct Ω for ma

>
∼ 10−5eV)

∗ strings go away (radiate cold axion particles, ~p ∼ H <
∼ 10−6ma)

Hiramatsu etal 1012.5502

9 / 69



"the axion mass turns on” tour de force of
Borsanyi etal, Nature16

BudapestMarseilleWupertal lattice collab.QCD Phase Transition (T ∼ 200 MeV) :

in the thermal bath are “instantons” (have
∫
d4xGG̃ ∈ N).

m2
a(T )f 2

a ≈ χ(T ), topological susceptibility, where

χ(T ) ≡
∫

d4x〈G(x)G̃ (x)G(0)G̃ (0)〉T

Calculate on lattice, for physical mq , T 6= 0, at various T ...
⇒ ma(T )...compare to H(T ) and know when axion starts to oscillate...

⇒ allows to predict
misalignment-axion
contribution to relic
DM density, as fn
of f (or ma)
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Pause : axion vs WIMP

WIMP = simple
(particles = use Bolzmann)

in equilibrium at T >∼ mWIMP

then “freezout”↔ relic density.
One epoch/calculation
≃ the WIMP miracle !
(can complexify...)

then LSS people do N-body...

(QCD) axion...relevant at many scales :
1-“PQ”PT : born massless when Φ gets
a vev ∼ 1011 GeV : pre/post inflation ?
...classical/quantum field eqns,top.deffects...

2-QCDPT :acquires mass = becomes
DM...what mass+ turn-on ? field or
particles ? ?
3-ρmat ∼ ρrad ( ρmat

ρmat
starts to grow,

T ∼3eV) : what is short-distance fluc-
tuation spectrum of axion field/par-
ticles ?
4-growing fluctuations teq → t0 :
Do axions grow stucture like WIMPs ?
And what does axion DM look like in
our galaxy today ?
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Pause

Have seen how the phase of a complex scalar gets a vev then a mass.

Could estimate analytically relic mass density ±10 ? (do better with hard work)

Remains to see : why is the QCD axion a CDM candidate ?
⇔ what is a successful Cold Dark Matter candidate ?

1. CDM redshifts like matter ∝ 1/R3(t), starting before the U is matter
dominated already checked this

2. CDM grows small density fluctuations like WIMPs on Large Scale
Structure/CMB scales

3. when density fluctuations become O(1) and collapse, any CDM candidate
should reproduce current observations at least as well as WIMPs
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What is a density fluctuation ?

Newtonian gravity (inside causally connected volume of U) :

δ(~x , t) ≡ ρ(~x , t)− ρ(t)

ρ(t)
ρ(t) ≡ 1

V

∫

V

d3xρ(~x , t)

Then can take fourier transform :

δ(~k , t) =

∫
d3xe i

~k·~xδ(~x , t)

this is interesting to do for small fluctuations |δ| ≪ 1, because can drop δ2,δ~v
and get linear eqns !

Einstein gravity invariant under coordinate reparametrisation = can redefine time such that

δρ = 0 ? But physics hsould be same ? Bardeen constructed reparam-invar formalism for

fluctuations, called “gauge invariant”, these days everyone uses “Newtonian gauge”. Summary :

not worry.

Dynamics (from Eisteins Eqns) curious :
1) ρ(t) causes homogeneous U expansion.

2) δ(~k, t) only feels gravitational attraction of fluctuations
3) expansion dilutes fluctuation growth...δ frozen in RadDom, grows in MatD.
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3) Initial conditions for density fluctuations (after the QCD PT)

1 : inflaton’s δρ/ρ on LargeScaleStructure scales imprinted on axion field(+part.)
...but what is short-distance spectrum ?
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3) Initial conditions for density fluctuations (after the QCD PT)

1 : inflaton’s δρ/ρ on LargeScaleStructure scales imprinted on axion field(+part.)
...but what is short-distance spectrum ?

2 : axion born after inflation :
field spatially random on QCDPT-horizon scale ≡ miniclusters
δρ
ρ ∼ O(1) on comoving scale 1/HQCD : Mmini ∼ 10−12Msol Hogan,Rees

Tkachev+Kolb

collapse around mat-rad equality — if to dense objects,
these objects could behave like CDM ?
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...but what is short-distance spectrum ?

2 : axion born after inflation :
field spatially random on QCDPT-horizon scale ≡ miniclusters
δρ
ρ ∼ O(1) on comoving scale 1/HQCD : Mmini ∼ 10−12Msol Hogan,Rees

Tkachev+Kolb

collapse around mat-rad equality — if to dense objects,
these objects could behave like CDM ?

2b. ? what fluctuations on QCD-horizon for axions particles from strings ? δρa
ρa

∼ 1 on

scale H
−1

QCDPT ? ?
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4) Eqns to grow δρ/ρ : different for field vs particles ?

1)non-rel axion particles described by f (x , p) ⇒ dust, like WIMPs : (so Boltzmann

Eqns + N-body work)

Tµν = ρvµvν =




ρ ρ~v

ρ~v ρvivj
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4) Eqns to grow δρ/ρ : different for field vs particles ?

1)non-rel axion particles described by f (x , p) ⇒ dust, like WIMPs : (so Boltzmann

Eqns + N-body work)

Tµν = ρvµvν =




ρ ρ~v

ρ~v ρvivj




2)Classical field : Tµν = ∂µa∂νa− gµν(∂
αa∂αa− V (a))

...in non-relativistic limit : a = (φe−imt + φ∗
e
imt)/

√
2

Tµν →




ρ ρ~v

ρ~v ρvivj +∆Tij




∆T i
j ∼ ∂ iφ∗∂jφ , λ|φ|4

Sikivie

⇒ classical field has different pressure, + self-interactions at O(λ)

? extra pressures distinguish axion field from WIMPs in structure formation ?
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(Parenthese : Klein Gordon or Einstein’s Eqns to evolve axion field ?)

?its the same dynamics, so as choose what is convenient ?
To obtain Klein-Gordon in curved space from T

µν
;ν = 0 :

Tµν
;ν = ∇ν [∇

µφ∇νφ]−∇ν [g
µν

(

1

2
∇αφ∇αφ− V (φ)

)

]

= (∇ν∇
µφ)∇νφ+∇µφ(∇ν∇

νφ)− gµν∇ν∇
αφ∇αφ+ gµνV ′(φ)∇νφ

0 = ∇µφ[(∇ν∇
νφ) + V ′(φ)]
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(Parenthese : Klein Gordon or Einstein’s Eqns to evolve axion field ?)

?its the same dynamics, so as choose what is convenient ?
To obtain Klein-Gordon in curved space from T

µν
;ν = 0 :

Tµν
;ν = ∇ν [∇

µφ∇νφ]−∇ν [g
µν

(

1

2
∇αφ∇αφ− V (φ)

)

]

= (∇ν∇
µφ)∇νφ+∇µφ(∇ν∇

νφ)− gµν∇ν∇
αφ∇αφ+ gµνV ′(φ)∇νφ

0 = ∇µφ[(∇ν∇
νφ) + V ′(φ)]

1. if δ(≡ δρ(~k , t)/ρ(t)) ≪ 1 (at z > 10?), use Einsteins eqns for Tµν∼φ2

because can be linearised = solvable.
(compare axion field eqn cpled to gravity : (�−m

2)φ ∼ GNφ
3)

2. when density fluctuations are O(1), solve field eqns ?
easier to impose phase continuity on NR field, than curl-free velocity in Tµν

16 / 69



Growing small fluctuations like WIMPs

• inside horizon, but conformal time, Tµ
ν;µ = 0,

with ρ(~x , τ) = ρ̄(τ)(1 + δ(~x , τ)), θ = ∇ · ~v gives

∂τδ +∇ · ~v = 0 +−∇ · [δ~v ] continuity

∂τθ +Hθ+~v · ∇θ +∇~v · ∇~v = −∇2VN+∇2
(

∇2√ρ

2m2√ρ + |λ| ρ
m4

)
∇ of Euler ,
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∂τθ +Hθ+~v · ∇θ +∇~v · ∇~v = −∇2VN+∇2
(

∇2√ρ

2m2√ρ + |λ| ρ
m4

)
∇ of Euler ,

• in fourier space (used Poisson : ∇2
VN = 3H

2

2
δ̃,Ωcdm = 1)

∂τ δ̃~k + θ̃~k = −0 +

∫
d3q

(2π)3
αWIMP(~q, ~k)δ̃~q θ̃ ~k−q

∂τ θ̃~k +Hθ̃~k +
3H2

2
δ̃~k = 0 +

∫
d3q

(2π)3
βWIMP(~q, ~k)θ̃~q θ̃ ~k−q

+ axions
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with ρ(~x , τ) = ρ̄(τ)(1 + δ(~x , τ)), θ = ∇ · ~v gives

∂τδ +∇ · ~v = 0 +−∇ · [δ~v ] continuity
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)
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• in fourier space (used Poisson : ∇2
VN = 3H

2

2
δ̃,Ωcdm = 1)

∂τ δ̃~k + θ̃~k = −0 +

∫
d3q

(2π)3
αWIMP(~q, ~k)δ̃~q θ̃ ~k−q

∂τ θ̃~k +Hθ̃~k +
3H2

2
δ̃~k = 0 +

∫
d3q

(2π)3
βWIMP(~q, ~k)θ̃~q θ̃ ~k−q

+ axions

• for small δ ( small k/large dist.), physics/numerics says non-linearities
negligeable :

δ̈ + 2H δ̇ − 4πGNρaδ+c2
s

k2

R2(t)
δ ≃ 0

(c2

s ∼ δP/δρ) irrelevant because k → 0

⇒ axion DM : grows linear/small density fluctuations like WIMPs
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When δρ/ρ ∼ 1, how to axions grow structure ?

do extra pressures affect “non-linear” structure formation ?

1. Simple : are stable/stationary solutions different for axion-field vs dust ?
Rindler-Daller+Shapiro, Chavanis, ...

Stable solution for axion-field is the size/mass of an asteroid (∼ 10−13Msol , ok in

galaxy)

2. Numerically solve field eqns with extra pressures and compare to N-body (=
dust) ? EtalBroadhurt, Niemeyer etal, MoczVogelsangerEtal
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Axion Asteroids : stable solution that could occur after collapse ?

1 look for time-independent solution to eqns ( !NB : eqns for ρ(x , t), NOT δ(x , t))

∂tρ = −∇ · ρ~v continuity

ρ∂t~v + ρ~v · ∇~v = ρ∇
(

∇2√ρ

2m2√ρ + |λ| ρ
m4 − VN

)
Euler ,

find (set ~v , ∂t = 0 and do dim analysis) :( 1

2m2R2
− |λ| M

m4R3
− GN

M

R

)
≃ 0 ⇒ R ∼

m2
pl

4m2M

(
1 ±

√
1 ∓ 4|λ|M2

m2
pl

)

(allow breathing mode(Chavanis) + rotation(DavidsonSchwetz) for m ∼ 10−4 eV,
λ ∼-10−45 of QCD axion born after inflation)

⇒ R ∼
m2

pl

4m2M
<∼ 100 km , M <∼

mpl f

m
∼ 10−(13±1)M⊙ ≃

{
asteroid!
<∼ minicluster

3 ok as galactic DM (between pico→microlensing)

? dynamics ? do asteroids form ? survive ? numerical problem...
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Neutrinos in cosmology

◮ leptogenesis : T : 1012 → 100 GeV, generate a lepton asym in CPV
dynamics, use SM B+L Violation to transform to baryons

◮ Big Bang Nucleosynthesis (H ,D,3 He,4 He,7 Li at T ∼MeV)
how many species of relativistic ν in the thermal soup ?

◮ decoupling of photons —e+p→H (CMB spectrum today)
cares about radiation density ↔ Nν ,mν

...all about interaction rates of particles in the U...
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an “EFT” for particle interactions in the early U ?

• EFT = recipe to study observables at scale ℓ
1. choose appropriate variables to describe relevant dynamics

2. 0th order interactions, by sending all parameters

{
L ≫ ℓ → ∞
δ ≪ ℓ → 0

3. then perturb in ℓ/L and δ/ℓ

Example : interactions in the early Universe of age τU (τU ∼ 10−24 sec)

⋆ processes with τint ≫ τU ...neglect !
⋆ processes with τint ≪ τU ...assume in thermal equilibrium !
⋆ processes with τint ∼ τU ...calculate this dynamics
⋆ can then do pert. theory in slow interactions and departures from thermal

equil.
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interactions — approaching equilibrium in an expanding U ?

Suppose the density of the U is dominated by relativistic particles in equilibrium
(ρ ∝ T 4)

H =
ȧ

a
=

√
8πG

3

geff π2T 4

30
≃ 1.7

√
geff

mpl

T 2 , geff ≡
∑

b,b

gb +
7

8

∑

f ,f

gf

and T (t) ∼ 1/a(t) ⇒ a(t) =
√
t/t0, so

τU(T ) =
1

2H
⇒ τU(sec) ≃ 0.7

MeV 2

T 2

Can estimate interaction rate of a particle in the plasma as

Γint ∼
1

τint
∼ β × ntarget × σ ∼ gT 3

π2
σ
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an example : QED

(lets forget IR divergences) For a e− interacting with a bath of γs :

βσ(eγ → eγ) =
2πα2

s
ln

s

m2
e

For s = (3T )2 ( ?or s = T 2) and
√
geff ∼ 10 :

Γ

H
∼ gγT

3

π2

2πα2

9T 2

1

H
∼ mpl

3 × 106T

⇒ e−, γ in thermal equil for T <∼ 1013 GeV. Ditto e+...
unbroken SU(N) : same scaling of Γ/H(T ) , rate a bit bigger.
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Another example : (νe → νe) at T ≪ mW

Interaction rate of a νµ,τ with e± (neglect rare n,p) :

Γ

H
∼ ge±T

3

π2
σ

1

H
with σ ≃ G2

F s

16π

So Γ ∼ H when

Γ ∼ G2
FT

5

4π
∼ 1.66

√
geff T

2

mpl

⇒ neutrinos acquire equilibrium densities before T ∼ MeV.
νµ,τ , νµ,τ decouple from e± around T ≃ 3.5 MeV,
νe has also W exchange diagram = remain in equilibrium til T ∼ 2 MeV.

Decouple at T ≫ mν , so retain relativistic number distribution ’til today
⇒ there is a Cosmic Neutrino BackGround.
(But Tν = (4/11)1/3Tγ , because e± annihilation heats γ wrt ν)
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(Exercise : how to detect CNB?)

In the room, are ∼ 106 WIMPS, ∼ 105 Be ν, and ∼ 1010 Cosmic Background
Neutrinos(CNB).

How to detect CNB?
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(Exercise : how to detect CNB?)

In the room, are ∼ 106 WIMPS, ∼ 105 Be ν, and ∼ 1010 Cosmic Background
Neutrinos(CNB).

What about ν capture βdecay : n+ νCNB → p + e ?
Weinberg

Cocco Mangano
Messina

To compare rates for 3H →3 He + e + ν̄e to νe +
3 H →3 He + e :

nνCNB

ν phase space
≃ T 3

CNB

π2

1

Q3
∼
(

10−4eV

20keV

)3

∼ 10−24

But...Ee = Q+mν

(recall for 3H →3 He + e + ν̄e , Ee ≤ Q −mν)

So...if ever resolution better than mν ...
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What rate associated to neutrino masses mD ν̄LνR ?

1. below mW /after EWPT(Elec.Weak PhaseTransition) : m2-correction to
gauge scattering

m2
νG

2
F

4π
T 3 >

1.7geffT
2

mpl

⇔ mν
>∼ 100 keV

2. above mt/before EWPT :
scattering via neutrino Yukawa : λℓHνR (attach other end of Higgs to tt̄)

λ2

4π
T >

1.7geffT
2

mpl

⇔ λ >∼ 10−8

(mDνLνR ∼ few × 100 eV νLνR)

Despite that there are six light chiral fermions in the model with Dirac
ν-masses, only three are “in equilibrium” in the early U ⇔ contribute to the
radiation energy density.
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BBN bounds on Nν

Nν ≡ number of 2-comp. relativistic νs with equilibrium energy density

1. (that cosmology measures Nν ∼ 3 means neutrinos have gravitational
interactions)

2. Big Bang Nucleosynthesis (T <∼ MeV, $τU ∼ few minutes) :
• neutrons crucial to form D,3,4 He, Li
• nn/np ∝ exp{−(mn −mp)/T} in thermal equil at T >∼ MeV
• “freezes” when Γ(n + ν → p + e) <∼ H , and
H2 ≃ 3ρrad/m

2
pl ; ρrad ⊃ {γ,Nνν}

⇒ “primordial” abundances of D,3,4 He, Li constrain

Nν
<∼ 4.08

Mangano, Serpico
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CMB bounds on Nν

3. Cosmic Microwave Background :(is a fit to a multi-parameter model...).
Roller coaster at ℓ > 150 is a snapshot of sound waves in the plasma at

recomb ; amplitude cares about ρb/ργ . Is sensitive to time since mat-rad
equality, which is sensitive to Nν ...but can compensate by changing other
parameters !

PDB discussion of Verde-Lesgourges :
suppose other inputs cancel LO effect no Nν ... what remains ?
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CMB bounds on Nν

3. Cosmic Microwave Background :(is a fit to a multi-parameter model...).
Roller coaster at ℓ > 150 is a snapshot of sound waves in the plasma at

recomb ; amplitude cares about ρb/ργ . Is sensitive to time since mat-rad
equality, which is sensitive to Nν ...but can compensate by changing other
parameters !

PDB discussion of Verde-Lesgourges :
suppose other inputs cancel LO effect no Nν ... what remains ?
Argue that remaining effects cannot be cancelled by ajusting parmeters,
so obtain :

Nν
<∼ 3.3 ± 0.5

PLANCK 13
more restrictive with

other cosmo input
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Cosmological probes of
∑

i |mν,i | ≡ Σ

• a late contribution to DM in cosmology :

relic ν “free-stream” til they become non-rel. (after recomb. for Σ <∼ eV), then
contribute to DM ∝∑i |mi | ≡ Σ.
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Cosmological probes of
∑

i |mν,i | ≡ Σ

• a late contribution to DM in cosmology :

relic ν “free-stream” til they become non-rel. (after recomb. for Σ <∼ eV), then
contribute to DM ∝∑i |mi | ≡ Σ.
• Σ has effects on CMB :
Relativistic → non-rel transition affects CMB propagation...parameter in
cosmological fits : Lesgourgues talk

CERN ν-platform kickoff∑
<∼ 0.1 → .6 eV now : PLANCK ,+LSS/Lyα (in ΛCDM)

<∼ 0.6 eV now : PLANCK + BAO (in 12 param ΛCDM)

→ <∼ 2matm cosmo.indep. (Planck + EUCLID...)

∼ matm ΛCDM
DiValentino etal

1507.06646
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Fewer twiddles for precision cosmology ?

So far, compute on “back of envelope”. Recall recipe :

To identify relevant interactions in the early Universe of age τU (τU ∼ 10−24 sec)

1. processes with τint ≫ τU ...neglect !
2. processes with τint ≪ τU ...assume in thermal equilibrium !
3. processes with τint ∼ τU ...calculate this dynamics
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Fewer twiddles for precision cosmology ?

So far, compute on “back of envelope”. Recall recipe :

To identify relevant interactions in the early Universe of age τU (τU ∼ 10−24 sec)

1. processes with τint ≫ τU ...neglect !
2. processes with τint ≪ τU ...assume in thermal equilibrium !
3. processes with τint ∼ τU ...calculate this dynamics

...sloppy is fine for 1,2 ; but if really want to calculate dynamics, need eqns for
3. ?
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Dynamical Eqns : can one use Boltzmann Eqns ? ? ?

Ludwig Boltzmann : 1844-1906 / Max Planck : 1858-1947 (~ ∼ 1900)

early U : ρ ∝ T 4 > nucleus for T > 100 MeV
τU ∼ nanosecond at T ∼ 100 GeV

curiously, usually yes !

31 / 69



Dynamical Eqns : can one use Boltzmann Eqns ? ? ?

Ludwig Boltzmann : 1844-1906 / Max Planck : 1858-1947 (~ ∼ 1900)

early U : ρ ∝ T 4 > nucleus for T > 100 MeV
τU ∼ nanosecond at T ∼ 100 GeV

curiously, usually yes !

Why is that ? Ask the closed-time-path, finite-density Path Integral for Eqns of
motion for the number operator...( Real-Time Finite-Temp Field Theory/ 2Particle-

Irreducible Eqns/ Kadanov-Baym-Schwinger-Dyson Eqns)

d

dt
n̂ = +i [Ĥ0, n̂]− [ĤI , [ĤI , n̂]] + ...

(2nd Quant.,Heisenberg rep, t-dep ops)

Ĥ0 = free Hamiltonian (Integral of hamiltonian density). Interaction rates from
second +... terms.
1) (anti)commutators give Bose-Einstein/FD phase space factors
2) ...if a hierarchy of interaction rates, then in the propagation eigenstate basis,
looks like Boltzmann ?
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Ludwig Boltzmann : 1844-1906 / Max Planck : 1858-1947 (~ ∼ 1900)

early U : ρ ∝ T 4 > nucleus for T > 100 MeV
τU ∼ nanosecond at T ∼ 100 GeV

curiously, usually yes !

Why is that ? Ask the closed-time-path, finite-density Path Integral for Eqns of
motion for the number operator...( Real-Time Finite-Temp Field Theory/ 2Particle-

Irreducible Eqns/ Kadanov-Baym-Schwinger-Dyson Eqns)

d

dt
n̂ = +i [Ĥ0, n̂]− [ĤI , [ĤI , n̂]] + ...

(2nd Quant.,Heisenberg rep, t-dep ops)

Ĥ0 = free Hamiltonian (Integral of hamiltonian density). Interaction rates from
second +... terms.
1) (anti)commutators give Bose-Einstein/FD phase space factors
2) ...if a hierarchy of interaction rates, then in the propagation eigenstate basis,
looks like Boltzmann ?
...lets suppose we can use Boltzmann... (there is an orange section at the end of
lectures, about how to get credible constants in rates = calculate thermally
averaged rates)
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Can neutrinos make the Universe we see ?

Leptogenesis

Leptogenesis is a class of recipes, that use majorana neutrino mass models to
generate the matter excess. The model generates a lepton asymmetry (before
the Electroweak Phase Transition), and the non-perturbative SM B+L violn
reprocesses it to a baryon excess.

Thanks to Gustave Doré
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Preambule

1. about “What the stars (and us) are made of” (5% of U)

≈ H ≈ baryons
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3. quantify as (s0 ≃ 7nγ,0)
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Preambule

1. about “What the stars (and us) are made of” (5% of U)

≈ H ≈ baryons
not worry about lepton asymmetry : is (undetected) Cosmic Neutrino
Background ...so how to measure asym? ? ?

2. I am made of baryons(defn) ... observation... all matter we see is made of
baryons (not anti-baryons)

3. quantify as (s0 ≃ 7nγ,0)

YB ≡ nB − nB̄
s

∣∣∣∣
0

= 3.86 × 10−9ΩBh
2 ≃ (8.53 ± 0.11)× 10−11

PLANCK

⇒ Question : where did that excess come from ?
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Where did the matter excess come from ?

1. the U(niverse) is matter-anti-matter symmetric ?
= islands of particles and anti-particles
X no ! not see γs from annihilation
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2. U was born that way...

X no ! After birth of U, there was “inflation”
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Where did the matter excess come from ?

1. the U(niverse) is matter-anti-matter symmetric ?
= islands of particles and anti-particles
X no ! not see γs from annihilation

2. U was born that way...

X no ! After birth of U, there was “inflation”
◮ (only theory explaining coherent temperature fluctuations in microwave

background that arrive from causally disconnected regions today...)
◮ “60 e-folds” inflation ≡ VU →> 1090

VU

(nB − n
B
) → 10−90(nB − n

B
), s from ρ of inflation...

3. created/generated/cooked after inflation...
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Three ingredients to prepare in the early U (old russian recipe)

Sakharov

1. B violation : if Universe starts in state of nB − nB̄ = 0, need B� to evolve to
nB − nB̄ 6= 0
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Three ingredients to prepare in the early U (old russian recipe)

Sakharov

1. B violation : if Universe starts in state of nB − nB̄ = 0, need B� to evolve to
nB − nB̄ 6= 0

2. C and CP violation : ...particles need to behave differently from
anti-particles.
Present in the SM quarks, observed in Kaons and Bs, searched for in
leptons (...T2K,future expts)

3. out-of-thermal-equilibrium ...equilibrium = static. “generation” =
dynamical process
No asym.s in un-conserved quantum #s in equilibrium
From end inflation → BBN, Universe is an expanding, cooling thermal
bath, so non-equilibrium from :

◮ slow interactions : τint ≫ τU = age of Universe (Γint ≪ H)
◮ phase transitions :

35 / 69



ingredient 1 : Does the SM conserve B ?

B, L are global symmetries of the SM Lagrangian (q, ℓ doublets, e, u, d singlets)

LSM ⊃ qD/ q , ℓD/ ℓ , ℓHe , qH̃u , qHd
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ingredient 1 : Does the SM conserve B ?

B, L are global symmetries of the SM Lagrangian (q, ℓ doublets, e, u, d singlets)

LSM ⊃ qD/ q , ℓD/ ℓ , ℓHe , qH̃u , qHd

so, classically, there are conserved currents, and B and L are conserved. (So
B + L and B − L are conserved.)

Good—proton appears stable :τp >∼ 1033 yrs (τU ∼ 1010 yrs).

But the SM does not conserve B + L...
In QFT, there is the axial anomaly...
...anomalously, the fermion current associated to a classical symmetry is not
conserved.

see Polyakov,
“Gauge Fields + Strings,”

6.3=qualitative effects of instantons
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ingredient 1 : the SM does not conserve B + L

B + L is anomalous. Formally, for one generation(α colour ) :

∑

SU(2)
singlets

∂µ(ψγµψ) + ∂µ(ℓγµℓ) + ∂µ(qαγµqα) ∝
1

64π2
W A

µνW̃
µνA.

where integrating the RHS over space-time counts “winding number” of the
SU(2) gauge field configuration.
⇒ Field configurations of non-zero winding number are sources of a doublet
lepton and three (for colour) doublet quarks for each generation.
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ingredient 1 : the SM does not conserve B + L

B + L is anomalous. Formally, for one generation(α colour ) :

∑

SU(2)
singlets

∂µ(ψγµψ) + ∂µ(ℓγµℓ) + ∂µ(qαγµqα) ∝
1

64π2
W A

µνW̃
µνA.

where integrating the RHS over space-time counts “winding number” of the
SU(2) gauge field configuration.
⇒ Field configurations of non-zero winding number are sources of a doublet
lepton and three (for colour) doublet quarks for each generation.

E

t

Left-handed fermions

thanks to V Rubakov
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SM B+L violation : rates

’t Hooft
Kuzmin Rubakov+

Shaposhnikov

At T = 0 is tunneling process (from winding # to next, “instanton”) : Γ ∝ e−8π/g2

At 0 < T < mW , can climb over the barrier : ΓB+L✟✟ ∼ e−mW /T T < mW

α5T T > mW
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’t Hooft
Kuzmin Rubakov+

Shaposhnikov

At T = 0 is tunneling process (from winding # to next, “instanton”) : Γ ∝ e−8π/g2

At 0 < T < mW , can climb over the barrier : ΓB+L✟✟ ∼ e−mW /T T < mW

α5T T > mW

⇒ fast SM B+L✟✟ at T > mW

ΓB+L✟✟ > H for mW < T < 1012 GeV

SM B+L✟✟ called “sphalerons”
⇒ if produce a lepton asym, “sphalerons” partially transform to a baryon
asym. ! !
⋆ ⋆ ⋆ SM B+L✟✟ is ∆B = ∆L = 3 (= Nf ). No proton decay ! ⋆ ⋆ ⋆
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Summary of preliminaries : A Baryon excess today :

• Want to make a baryon excess ≡ YB after inflation, that corresponds today to
∼ 1 baryon per 1010 γs.
• Three required ingredients : B� , CP✟✟ , TE✟✟ .
Present in SM, but hard to combine to give big enough asym YB

Cold EW baryogen ? ? Tranberg et al
...

⇒ evidence for physics Beyond the Standard Model (BSM)
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Summary of preliminaries : A Baryon excess today :

• Want to make a baryon excess ≡ YB after inflation, that corresponds today to
∼ 1 baryon per 1010 γs.
• Three required ingredients : B� , CP✟✟ , TE✟✟ .
Present in SM, but hard to combine to give big enough asym YB

Cold EW baryogen ? ? Tranberg et al
...

⇒ evidence for physics Beyond the Standard Model (BSM)

One observation to fit, many new parameters...

⇒ prefer BSM motivated by other data ⇔ mν ⇔ seesaw ! (uses non-pert. SM

B+L✟✟ )
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The type I seesaw
Minkowski, Yanagida

Gell-Mann Ramond Slansky

• add 3 singlet N to the SM in charged lepton and N mass bases, at scale > Mi :

add 18 parameters :
M1,M2,M3

18 - 3 (ℓ phases) in λL = LSM + λαJNJℓα · φ− 1
2NJMJN

c
J

MI unknown (∝/ v = 〈φ0〉), and Majorana (L� ). CP✟✟ in λαJ ∈ C .
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The type I seesaw
Minkowski, Yanagida

Gell-Mann Ramond Slansky

• add 3 singlet N to the SM in charged lepton and N mass bases, at scale > Mi :

add 18 parameters :
M1,M2,M3

18 - 3 (ℓ phases) in λL = LSM + λαJNJℓα · φ− 1
2NJMJN

c
J

MI unknown (∝/ v = 〈φ0〉), and Majorana (L� ). CP✟✟ in λαJ ∈ C .

• at low scale, for M ≫ mD = λv , light ν mass matrix

νLα νLβ

NA

MA

Xx x
vλαA vλβA

9 parameters :
m1,m2,m3

6 in UMNS

[mν ] = λM−1λTv2

for
λ ∼ ht , M ∼ 1015 GeV

λ ∼ 10−7, M ∼ 10 GeV
∼ .05 eV

“natural” mν ≪ mf : mν ∝ λ2, and M > v allowed.
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The type I seesaw
Minkowski, Yanagida

Gell-Mann Ramond Slansky

• add 3 singlet N to the SM in charged lepton and N mass bases, at scale > Mi :

add 18 parameters :
M1,M2,M3

18 - 3 (ℓ phases) in λL = LSM + λαJNJℓα · φ− 1
2NJMJN

c
J

MI unknown (∝/ v = 〈φ0〉), and Majorana (L� ). CP✟✟ in λαJ ∈ C .

• at low scale, Higgs mass contribution

φ φ
NA

ν

λαA λβA

δm2
φ ≃ −

∑

I

[λ†λ]II
8π2

M2
I ∼ mνM

3
I

8π2v4
v2

for M >∼ 107 GeV > v2 tuning problem

( ? adding particles to cancel 1 loop...but higher loop ? Need symmetry to cancel ≥ 2

loop ?)

⇒ do seesaw with MI
<∼ 108 GeV ?

(NB, in this talk, φ = Higgs, H = Hubble)
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Leptogenesis in the type 1 seesaw : usually a Fairy Tale
Fukugita Yanagida

Buchmuller et al
Covi et al

Branco et al
Giudice et al

...

Once upon a time, a Universe was born.
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Leptogenesis in the type 1 seesaw : usually a Fairy Tale
Fukugita Yanagida

Buchmuller et al
Covi et al

Branco et al
Giudice et al

...

If this asymmetry can escape the big bad wolf of thermal equilibrium...
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Leptogenesis in the type 1 seesaw : usually a Fairy Tale
Fukugita Yanagida

Buchmuller et al
Covi et al

Branco et al
Giudice et al

...

Once upon a time, a Universe was born.

At the christening of the Universe,the fairies give the Standard Model and the Seesaw

(heavy sterile Nj with L� masses and CP✟✟ interactions) to the Universe.

The adventure begins after inflationary expansion of the Universe :
1 If its hot enough, a population of Ns appear(they like heat).
2 The temperature drops below M, N population decays away.

3 In the CP✟✟ and L� interactions of the N, an asymmetry in SM leptons is created.
4 If asymmetry escapes the wolf of thermal equilibrium...

5 the lepton asym gets partially reprocessed to a baryon asym by non-perturbative

B + L -violating SM processes (“sphalerons”)

And the Universe lived happily ever after, containing many photons. And for
every 1010 photons, there were 6 extra baryons (wrt anti-baryons).
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Does it work ? Calculate something ?

Recipe : calculate suppression factor for each Sakharov condition, multiply
together to get YB :

nB − nB̄
s

∼ 1

3g∗
ǫL,CPηTE ∼ 10−3ǫη (want 10−10)

s ∼ g∗nγ , ǫ = lepton asym in decay, η = TE✟✟ process/γ
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Recipe : calculate suppression factor for each Sakharov condition, multiply
together to get YB :

nB − nB̄
s

∼ 1

3g∗
ǫL,CPηTE ∼ 10−3ǫη (want 10−10)

s ∼ g∗nγ , ǫ = lepton asym in decay, η = TE✟✟ process/γ
TE✟✟ + dynamics :

Suppose at T >∼ M1, a density ∼ T 3 is produced.
Later, Lepton asym produced in CP✟✟ N decays, survives if not washed out by
Inverse Decays = survives after ID out of equil :

ΓID(φℓ → N) ≃ Γdecay e
−M1/T =

[λλ†]11M1

8π
e−M1/T <

10T 2

mpl
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Does it work ? Calculate something ?

Recipe : calculate suppression factor for each Sakharov condition, multiply
together to get YB :

nB − nB̄
s

∼ 1

3g∗
ǫL,CPηTE ∼ 10−3ǫη (want 10−10)

s ∼ g∗nγ , ǫ = lepton asym in decay, η = TE✟✟ process/γ
TE✟✟ + dynamics :

Suppose at T >∼ M1, a density ∼ T 3 is produced.
Later, Lepton asym produced in CP✟✟ N decays, survives if not washed out by
Inverse Decays = survives after ID out of equil :

ΓID(φℓ → N) ≃ Γdecay e
−M1/T =

[λλ†]11M1

8π
e−M1/T <

10T 2

mpl

Fraction N remaining at TID when ID turn off :

nN

nγ
(TID) ≃ e−M1/Tα ≃ H

Γ(N → ℓαφ)
≡ η
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Estimate ǫ, the CP asymmetry in decays
Kolb+Wolfram,

NPB ’80, Appendix

Recall (in S-matrix) CP : 〈φℓ|S |N〉 → 〈φℓ|S |N〉 = 〈φℓ|S |N〉,(η =anti-η)
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NPB ’80, Appendix

Recall (in S-matrix) CP : 〈φℓ|S |N〉 → 〈φℓ|S |N〉 = 〈φℓ|S |N〉,(η =anti-η)

In leptogenesis, need CP✟✟ ,L� interactions of NI ...for instance :

ǫαI =
Γ(NI →φℓα)− Γ(N̄I → φ̄ℓ̄α)

Γ(NI →φℓ)+Γ(N̄I → φ̄ℓ̄)
(recall NI = N̄I )

∼ fraction N decays producing excess lepton
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Estimate ǫ, the CP asymmetry in decays
Kolb+Wolfram,

NPB ’80, Appendix

Recall (in S-matrix) CP : 〈φℓ|S |N〉 → 〈φℓ|S |N〉 = 〈φℓ|S |N〉,(η =anti-η)

In leptogenesis, need CP✟✟ ,L� interactions of NI ...for instance :

ǫαI =
Γ(NI →φℓα)− Γ(N̄I → φ̄ℓ̄α)

Γ(NI →φℓ)+Γ(N̄I → φ̄ℓ̄)
(recall NI = N̄I )

∼ fraction N decays producing excess lepton

X
λ

NI ℓα

φ

×

λ∗ λ

λ

NJXNI ℓα

φ

φ

ℓ

+
λ∗ λ λ

NJ

XNI ℓα

φ

φ

ℓ

Just try to calculate ǫ1 ?
• asym at tree × loop, if CP✟✟ from complex cpling and on-shell particles in the
loop (divergences cancel in diff, need Im part of Feynman param integrtn)
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loops, unitarity and all that...(estimate ǫ, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate ǫ from tree
amplitudes.
Consider M1 ≪ M2,3, asym from CP✟✟ ,L� decays of N1 :

ǫα1 =
Γ(N1→φℓα)− Γ(N̄1→ φ̄ℓ̄α)

Γ(N1→φℓ)+Γ(N̄I → φ̄ℓ̄)
(recall N1 = N̄1)
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loops, unitarity and all that...(estimate ǫ, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate ǫ from tree
amplitudes.
Consider M1 ≪ M2,3, asym from CP✟✟ ,L� decays of N1 :

ǫα1 =
Γ(N1→φℓα)− Γ(N̄1→ φ̄ℓ̄α)

Γ(N1→φℓ)+Γ(N̄I → φ̄ℓ̄)
(recall N1 = N̄1)

[κ]αβ ∼ [mν ]αβ

v2

X
λ

N1 ℓα

φ

×

λ∗

κN1 ℓα

φ

φ

ℓ

+
λ∗

κN1

ℓα

φ

φ

ℓ
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loops, unitarity and all that...(estimate ǫ, no loop caln)

Can use unitarity and CPT invariance of S-matrix to estimate ǫ from tree
amplitudes.
Consider M1 ≪ M2,3, asym from CP✟✟ ,L� decays of N1 :

ǫα1 =
Γ(N1→φℓα)− Γ(N̄1→ φ̄ℓ̄α)

Γ(N1→φℓ)+Γ(N̄I → φ̄ℓ̄)
(recall N1 = N̄1)

[κ]αβ ∼ [mν ]αβ

v2

X
λ

N1 ℓα

φ

×

λ∗

κN1 ℓα

φ

φ

ℓ

+
λ∗

κN1

ℓα

φ

φ

ℓ

ǫ1 ∼ 1

8π

λ2κ

λ2
M <

3

8π

mmax
ν M1

v2
∼ 10−6 M1

109GeV
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Estimate YB

Recall(s ∼ g∗nγ , ǫ = lepton asym in decay η = TE✟✟ process/γ) :

nB − nB̄
s

∼ 1

3g∗
ǫL,CPηTE ∼ 10−3ǫη (want 10−10)

∼ 10−3H

Γ
10−6 M1

109GeV

for M1 ≪ M2,3, need M1
>∼ 109 GeV to obtain sufficient ǫ

?but give δm2
H ≫ m2

H ?
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do leptogenesis with MK < 107 GeV ?

For MI ∼ MJ ⇔ resonantly enhance ǫ ... up to ǫ <∼ 1/8π !
but need decays before Electroweak PT (to profit from sphalerons)... and ID
out-of-equil :

ΓID ∼ e−M/TΓ(N → φℓ) < H ⇒ M >∼ 10Tc

Fairy tale works for degen NI for MI
>∼ TeV

(but are MI ∼ TeV any more detectable than MI ∼ 109 GeV?)
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νMSM : type 1 seesaw below 100 GeV gives BAU and DM
Asaka + Shaposhnikov

thesis Canetti
...

ingredients : SM +

N2,3 : 100 MeV <
∼ M2,3

<
∼ 10 GeV, ∆M <

∼

{

10−6 eV YB ,ΩDM

keV YB ,NOT ΩDM

Yukawas ∋ give 2 light SM neutrinos via seesaw
N1 : M1 ∼ keV. WDM candidate.

feebly coupled (negligeable contribution mν,SM )
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<
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10−6 eV YB ,ΩDM

keV YB ,NOT ΩDM

Yukawas ∋ give 2 light SM neutrinos via seesaw
N1 : M1 ∼ keV. WDM candidate.

feebly coupled (negligeable contribution mν,SM )

scenario :
Population of N2,3 produced via Yukawas before EPT
Produce ∆L → YB via oscillations of N2,3, νSM before EPT
Produce ∆L >∼ 10−5 via osc. and decay of N2,3 after EPT
Can produce sufficient distribution of N1 via osc.
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νMSM : type 1 seesaw below 100 GeV gives BAU and DM
Asaka + Shaposhnikov

thesis Canetti
...

ingredients : SM +

N2,3 : 100 MeV <
∼ M2,3

<
∼ 10 GeV, ∆M <

∼

{

10−6 eV YB ,ΩDM

keV YB ,NOT ΩDM

Yukawas ∋ give 2 light SM neutrinos via seesaw
N1 : M1 ∼ keV. WDM candidate.

feebly coupled (negligeable contribution mν,SM )

scenario :
Population of N2,3 produced via Yukawas before EPT
Produce ∆L → YB via oscillations of N2,3, νSM before EPT
Produce ∆L >∼ 10−5 via osc. and decay of N2,3 after EPT
Can produce sufficient distribution of N1 via osc.

tests :
N2,3 : beam dump, SHIP
N1 as DM : X -rays from DM decay, WDM bounds (depend on momentum distribution)
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How does asym generation work ? (very simplified !)

1 at T <∼ TeV (recall λ <
∼ 10−7) , produce N2,N3 via Yukawa interaction λNℓ · φ
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2 N2,N3 oscillate (almost degenerate)
3 back to νL via λ
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How does asym generation work ? (very simplified !)

1 at T <∼ TeV (recall λ <
∼ 10−7) , produce N2,N3 via Yukawa interaction λNℓ · φ

2 N2,N3 oscillate (almost degenerate)
3 back to νL via λ
at τU ∼ τosc , 1,2,3 are coherent, so CPV from λ-∆M2-λ gives flavour asyms in
νLα (to small)

*lepton number in ℓL + NR is conserved* (actually, LSM+ helicity of NI )

from τosc → τEWPT , asyms in νLα seed asyms in N −→ asyms in νLα (enough asym)

...works also in detailed calculations with all available technology...
(eg also include lepton number violating interactions)

Teresi Hambye
Eijima + Shaposhnikov

Ghiglieri+ Laine
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U2 = Tr[λM−2λ†]
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Summary

Leptogenesis is a class of recipes, that use majorana neutrino mass models to
generate the matter excess. The model generates a lepton asymmetry (before
the Electroweak Phase Transition), and the non-perturbative SM B+L violn
reprocesses it to a baryon excess.
⋆ efficient, to use the BSM for mν to generate the Baryon Asym.
⋆ using SM B+L violn (∆B = ∆L = 3) avoids proton lifetime bound

⋆ it works ...rather well, for a wide range of parameters
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Appendices
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To compute credible constants in rates

In particle physics, compute decay rates in the particle rest frame... but... for a
thermal population in FRW? Expect “boost” of decay time for relativistic
particles ? Consider decay N → φℓ :

|M(N → ℓφ)|2 = 2|λ|2pN · pℓ = |λ|2(M2
1 +m2

ℓ −m2
φ)

N- rest-frame calculation, massless final state particules :

Γ(N → ℓφ) =
1

2M

∫
|M(N → ℓφ)|2(2π)4δ4(...)dΠpdΠq =

|λ|2M1

16π
.

Not-rest-frame 2-particle phase space ? : with (dΠp = d3p

2E (2π)3
)

∫
(2π)4δ4(

∑
pi −

∑
pf )dΠpdΠq =

∫ |~pp |
16π2

√
s
dΩp rest frame

=
∫ |~pp−~pq|

32π2
√
s
dΩp =

∫
√
(pp · pq)2 −m2

pm
2
q

16π2s
dΩp,
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But to calculate in a thermal bath ?

1. finite density — can contribute “thermal masses” to 2-pt function
2. momentum distribution : calculate “rate density” γ = 〈nNΓ〉 :

γ(N → ℓφ) = gN

∫
d3pN

2EN(2π)3
e−EN/T 2|λ|2M2

1

∫
δ̃ dΠφdΠℓ

=
gNT

3

2π2
z2K1(z)Γ(N1 → ℓφ),

where K1 = Bessel fn. Taking limits of Bessel fns gives time dilation as expected :

pour z ≪ 1 γ ≃ n
eq
N Γ

M

T

pour z ≫ 1 γ ≃ n
eq
N Γ
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For a 2 → 2 process : rate density γ ijmn

γ ijmn = 〈ninjσ(i + j → ..)〉

=

∫
dΠidΠj f

eq
i f

eq
j

∫
|M(i + j → m + n)|2 δ̃ dΠmdΠn

= gigj

∫
dΠidΠje

−(Ei+Ej )/T
√
(pi · pj)2 −m2

i m
2
j σ((pi + pj)

2),

gigj because cross-sections averaged on spins. Used fBoltzman

Can do integrals on initial state momenta, indep of |M|2, by putting
1 =

∫
d4Qδ4(Q − pi − pj) dans l’intégral : initial distributions are 2bdy

phase-space—see before).

γ ijmn = gigj

∫
d4Q

(2π)4
e−Q0/T

√
(pi · pj)2 −m2

i m
2
j

4πs

×
√
(pi · pj)2 −m2

i m
2
j σ((pi + pj)

2),
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do some algebra

define s = Q2
0 − ~Q2 and [(pi · pj)2 −m2

i m
2
j ] = s2λ

(
1,

m2
i

s
,
m2

j

s

)
/4,

with λ(a, b, c) = (a− b − c)2 − 4bc :

γ(i + j → m + n) = gigj

∫
dQ0d

3Q

(2π)4
e−Q0/T

4πs
[s2λ

(
1,

m2
i

s
,
m2

j

s

)
]σ(Q2)

then use d3| ~Q| =
√
Q2

0 − s ds dΩ/2 and keep
∫

dQ0 :

γ(i + j → m + n) =
gigj

128π5

∫
sds dΩ

∫
√
s

dQ0e
−Q0/T

√
Q2

0 − s λ(..)σ(s)

=
gigjT

32π4

∫
dss3/2 K1

(√
s

T

)
λ

(
1,

m2
i

s
,
m2

j

s

)
σ(s),

Then in the massless limit, λ(1, x , y) → 1, so using
∫

∞

0

xnK1(x)dx = 2n−1Γ(1 + n/2)Γ(n/2)

get same scaling with T as back-of-envelope, different coefficient.
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Units+useful relations

For ~ = c = k = 1 (so ~c = 197.3 MeV fm, (~c)2 = .3894 GeV2 mb), et
GN = 1/m2

pl , mpl ≃ 1.2 × 1019 GeV :

1GeV ≃ 1.6 × 10−3erg ≃ 1.16 × 1013 oK ≃ 1.8 × 10−24gr

1GeV−1 ≃ 2.0 × 10−14cm

≃ 6.6 × 10−25sec

kiloparsec = 3 × 1021cm = 103pc = 10−3Mpc

keV = 1.37 × 1039ergs/gr/sec

galaxie ∼ 1011 stars, M ∼ 1045 grammes, R ∼ 1023 cm ∼ 100 kpc
sun(star) : M ∼ 2 × 1033 grammes, R ∼ 7 × 1010 cm
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equilibrium distributions

Suppose particles in thermal/chemical equilibrium in early U (energy/conserved
quantum numbers)
FRW has privileged coordinates, homog.+ isotropic, lets sit there.
FermiDirac (+) , BoseEinstein (-) phase space distributions are :

f
eq
i ,±(p) =

1

e(Ei−µi )/T ± 1
,

which gives equilibrium number densities (mi , µi ≪ T ,)

n
eq
i =

gi

(2π)3

∫
d3pf

eq
i (p) (gi = # internal d.o.f. of part.)

→ giT
3

π2
ζ(3)×

[
1 +

µiζ(2)

T ζ(3)
+ ...

]
(bosons)

→ giT
3

π2
ζ(3)×

[3
4
+

µiζ(2)

2T ζ(3)
+ ...

]
(fermions)

ζ(x + 1) =
1

Γ(x + 1)

∫ ∞

0

tx

et − 1
dt ,

1

et + 1
=

1

et − 1
− 2

e2t − 1

where Γ(n + 1) = n!, and ζ(2) = π2/6, ζ(3) = 1.202, et ζ(4) = π4/90.
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phase space distributions and quantum theory : [x , p] ∝ ~ ↔ f (x , p) ?

Is f (x , p) appropriate in the early U at energies beyond the LHC and densities
higher than the nucleus ?

T’is OK... f (x , p) appears in the 2-pt function :
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phase space distributions and quantum theory : [x , p] ∝ ~ ↔ f (x , p) ?

Is f (x , p) appropriate in the early U at energies beyond the LHC and densities
higher than the nucleus ?

T’is OK... f (x , p) appears in the 2-pt function : for complex scalar φ :

φ̂(t, ~x) =

∫
d3k

(2π)3
1√
2k0

{
â~ke

−ik·x + b̂
†
~k
e ik·x

}

With conserved Noether current :

φ†(∂tφ) − (∂tφ
†)φ

Write 0-component (# op) as 2-pt function, where
X ∼ scale of system ≫ δ ∼ size of particles

N̂(X− δ

2
,X+

δ

2
) = φ̂†(X− δ

2
)∂t φ̂(X+

δ

2
) + ∂t φ̂

†(X− δ

2
)φ̂(X+

δ

2
)
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Then take fourier trans wrt δ :

N̂(X , k) =

∫
d4δ

(2π)4
e ik·δN̂(X − δ/2,X + δ/2)

Imagine to work with â(X )†, â(X ) X -dep, ⇔ quantise in boxes |~δ|3 at pts X

(discrete var).
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Then take fourier trans wrt δ :

N̂(X , k) =

∫
d4δ

(2π)4
e ik·δN̂(X − δ/2,X + δ/2)

Imagine to work with â(X )†, â(X ) X -dep, ⇔ quantise in boxes |~δ|3 at pts X

(discrete var). Then For state |n〉, of particules of momenta k in the box at X :

〈n|â†k (X )âp(X )|n〉 = f (X , k)δ3(~k − ~p)(2π)3
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equilibrium energy density

ρeq
i =

4πgi
(2π)3

∫
dp p2ω f

eq
i (p)

→ mini = migie
−mi/T

(
miT

2π

)3/2

(non − rel.)

→ giT
4

2π2
6 ζ(4)×

[
1 + ...

]
(mi/T , µi/T → 0, bosons)

→ giT
4

2π2
6 ζ(4)

[7
8
+ ...

]
(mi/T , µi/T → 0, fermions)

where 6ζ(4) = π4/15.
So energy density of relativistic plasma is

ρrad =
geff

2

π2T 4

15
=

geff

2
ργ avec geff ≡

∑

b,b

gb +
7

8

∑

f ,f

gf
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Bessel Fns

K1 = Bessel fn (Gradshteyn and Ryzhik eqn 8.432.3) :

zK1(z) =

∫ ∞

z

e−x
√

x2 − z2dx →
{

1 z ≪ 1√
πz
2 e−z z ≫ 1

Recall :

n
eq
i ,MB =

gi

(2π)3

∫
d3pf

eq
i ,MB(p) =

giT
3

2π2
z2
i K2(zi ) zi =

mi

T
6= 0, µ = 0,

where K2(z) est fonction de Bessel :

z2K2(z) =

∫ ∞

z

xe−x
√
x2 − z2dx →

{
2 z ≪ 1

z
√

πz
2 e−z z ≫ 1
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