Status of the B anomalies: part 1

Patrick Owen

Particle Flavour Fever Summer School 13/08/18

Lepton universality

This talk centres around experimental tests of lepton universality.

This very distinctive SM feature appears to be violated in semileptonic B decays

Its a very hot topic, at least in LHCb.

Patrick Owen

The black box

The black box

Patrick Owen

Particle flavour fever school

Outline

- Introduction to the relevant experiments
- Charged current tree-level anomalies (today)
- Neutral-current loop-level anomalies (Wednesday)
- Outlook

Let's produce some Bs

- Firstly, let's produce as many B's as we can cope with.
- Can do this in two ways:

Both have advantages and disadvantages.

The experiments

 I will concentrate on the LHCb experiment, but its interesting to compare to the B-factories, as they are quite different approaches.

~2000-2010

2009-present

~2000-2008

The experiments

• I will concentrate on the LHCb experiment, but its interesting to compare to the B-factories, as they are quite different approaches.

LHCb luminosity

• Why don't we run at the same luminosity as CMS/ATLAS?

The luminosity bottleneck

- Collision rate ~30Mhz
- Electronics can read out at 1Mhz.
 - Must make trigger decisions based on only partial information.

Require high PT muon or high ET ECAL/HCAL cluster.

This saturates rather quickly for hadronic B decays.

What's important for B physics

Good mass resolution

Hadron PID discrimination

The signals

Why semi-leptonic decays?

 A decay is semi-leptonic if its products are part leptons and part hadrons.

- These decays can be factorised, greatly simplifying theoretical calculations.
- Lepton universality ratios further cancel theoretical uncertainties.

Types of semi-leptonic decay Two types of semi-leptonic B decay Neutral current *v* **Charged current** μ^+/τ^+ \mathcal{V} W^+ BCan proceed via tree level -large O(%)Forbidden at tree level - low O(10⁻⁶) branching fractions. branching fractions. NP sensitivity up to about 1 TeV NP sensitivity up to about 50 TeV

Patrick Owen

Tree-level $b \to c \ell \nu$ transitions

$R(D^*)$

• Large rate of charged current decays allow for measurement in semi-tauonic decays.

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

- Form ratio of decays with different lepton generations.
- Cancel QCD/expt uncertainties (90% of R(D*), 50% of R(D)).
- R(D*) sensitive to any physics model favouring 3rd generation leptons (e.g. charged Higgs).

Who has made measurements

• Three experiments have made measurements

	BaBar	Belle	LHCb
#B's produced	O(400M)	O(700M)	O(800B)*
Production mechanism	$\Upsilon(4S) \to B\bar{B}$	$\Upsilon(4S) \to B\bar{B}$	$pp \to gg \to b\overline{b}$
Dublicationa	Phys.Rev.Lett 109,	Phys.Rev.D 92, 072014 (2015)	Phys.Rev.Lett.115, 111803 (2015)
FUDIICATIONS	Phys. Rev. D 88, 072012 (2013)	Phys. Rev. D 94, 072007 (2016)	Phys. Rev. Lett. 120, 171802 (2018)
* during ru	r 1 of the LUC	Phys. Rev. D 97, 012004 (2018)	

* during run 1 of the LHC Patrick Owen

Tau decays

$\tau \to \mu \nu \nu$	$\tau \to 3\pi \nu$	$\tau ightarrow \pi \nu$
Large statistics	More kinematic information	Good polarimeter
Efficiency largely cancels with muonic mode $B \rightarrow D^*(\tau \rightarrow \mu\nu\nu)\nu$ vs $B \rightarrow D^*\mu\nu$	Precise tau flight information	π^{-} θ_{hel}
Tau decay well understood	No background from muonic modes	Tau decay well understood

I will start with the measurements using $\tau \to \mu \nu \nu$

The problem with neutrinos

- At least two neutrinos in the final state (three if using $\ au o \mu
 u)
 u$
- LHCb Candidates per 10 MeV/c LHCb 10 MeV/ No sharp peak to fit in an ····· Signal ····· Signal Combinatoria Combinatorial Candidates $0.045 < q^2 < 1.1 \, [\text{GeV}^2/c^4]$ $1.1 < q^2 < 6.0 [\text{GeV}^2/c^4]$ ulls Pulls +++++++ _{╇╈}┿┿_{┿╋}╋_╋╋_╋╋_╋╋_╋╋_╋╋_╋ [╋]╪╪╪_{┱╪╅}╪_┱╪[┿]┽┽_┙┽[╹]╻┽_{╴╄}[┿]╺┯┿┿╶┼┥╴┽[┿]╴┿╶╧╶╌[┿]┽╵╴ 5400 5600 5800 5600 5800 $m(K^+\pi^-\mu^+\mu^-)$ [MeV/c²] $m(K^+\pi^-\mu^+\mu^-)$ [MeV/c²] LHCb ----- Signal $\overline{A}_{h}^{0} \rightarrow K^{+} \overline{p} J / \psi (\rightarrow \mu^{+} \mu^{-})$ Эсг $K^{*0}I/\psi(\rightarrow \mu^+\mu^-)$ Candidates 20000 Difficult to reconstruct 1m Pulls B rest frame (used to 5400 5600 5800 $m(K^+\pi^-\mu^+\mu^-)$ [MeV/c²] discriminate signal 1cm and backgrounds). Ū,

Reconstruction at the B-factories

• At B-factories, gain a lot information using a 'tagging' technique.

Belle II's new algorithm improves things by a factor over a factor 2.

- Cleanest is to fully reconstruct hadronic decays: ε ~ 0.1%.
 - Over 2000 final states are reconstructed.
- Can also use semileptonic decays: ε ~ 0.2%.
 - Better efficiency but information is lost.

Things don't get much worse

In the end $B \to D^{(*)}\mu\nu$ is not such a problem.

Patrick Owen

Backgrounds

- Most complicated background is $B \to D^{(*)}(D_s^+ \to \mu X)$
- Not such a problem for the Bfactories, why?

• Missing more than a neutrino causes you to look more like a tau.

Patrick Owen

Aside: Likelihood fits

- General steps to determine a signal yield:
 - Write down a probability density function, PDF, as a function of parameters, λ .
 - Find the values of λ which maximize the likelihood that the PDF describes the data (using gradient descent).

Once a tolerance has been achieved, calculate the second derivate (Hessian matrix) to determine the uncertainties.

200

100

0

100

50

0 100

50

Events/(100 MeV

Template fits

- The fits use 'templates' to fit the data.
 - This just means the PDFs are non-parametric.
- For the LHCb case, we use histograms as the PDF.

Templates

Blinding

- All NP sensitive analyses are blinded, which means that the result is not looked at until the last second (once the analysis procedure has been finalised).
- This is an incredibly important part of an analysis, to avoid conscious and unconscious bias.
 - Avoid training a selection on the data itself.
 - What if an alternative model gives a much closer to result to the SM?

Hints of an excess?

- All experiments see an excess in the number of $B \to D^* \tau \nu$ candidates.
- What's interesting is that the experiments have rather different systematic sources.

Aside: Systematic uncertainties

- The definition of a systematic uncertainty is a bit fuzzy.
 - Wide definition of anything that isn't the uncertainty on the signal dataset.
 - Narrow definition of anything that won't scale with luminosity.
- In reality, its anything that you cannot parameterise in the fit.
 - Multiplying your likelihood by a Gaussian PDF which describes an systematic uncertainty is usually the best way of including an uncertainty.
 - Changing something and recomputing the result is not a very good way to do things.

Systematic Uncertainties

• So what can we be worried about in this measurement?

R(D*) control samples

Anti-isolate signal to enrich particular backgrounds.

This goes directly into the fit. III be talking about the all the sources.

Systematic uncertainties

• Systematic uncertainties affect the fit shapes and the efficiencies.

BaBar, Phys	. Rev.	D 88,	072012	(2013)
-------------	--------	-------	--------	--------

		Frac	tional u	ncertainty	(%)	
Source of uncertainty	$\mathcal{R}(D^0)$	$\mathcal{R}(D^{*0})$	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
Additive uncertainties						
\mathbf{PDFs}						
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5
$\mathcal{B}(\overline{B} \to D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6
Cross-feed constraints						
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4
Isospin constraints	_	_	_	_	1.2	0.3
Fixed backgrounds						
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3
Multiplicative uncertainties						
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7
$\mathcal{B}(au^- o \ell^- ar{ u}_\ell u_ au)$	0.2	0.2	0.2	0.2	0.2	0.2
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1
	ee =		01.0	10 5	10.0	0.0
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0

LHCb, PHYS. REV. LETT. 115, 111803 (2015)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+} H_c (\to \mu \nu X') X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu})$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(au^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Simulated sample size

• The largest uncertainty in both cases is the size of simulation.

		Frac	tional u	ncertainty	(%)	
Source of uncertainty	$\mathcal{R}(D^0)$	$\mathcal{R}(D^{*0})$	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
Additive uncertainties						
PDFs						
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5
$\mathcal{B}(\overline{B} \to D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3
$\mathcal{B}(\overline{B} \to D^{**}\tau^- \overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6
Cross-feed constraints						
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4
Isospin constraints	_	_	_	_	1.2	0.3
Fixed backgrounds						
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3
Multiplicative uncertainties						
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7
$\mathcal{B}(\tau^- o \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2	0.2	0.2	0.2	0.2	0.2
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0

BaBar, Phys. Rev. D 88, 072012 (2013)

LHCb, PHYS. REV. LETT. 115, 111803 (2015)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_\mu$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

A word on simulation

- At the LHC, it takes 25ns to produce an event.
- It takes about a minute for fully simulate an event.
- Roughly 1 in 100 collisions has a bb pair.
- The branching fractions of the decays involved are O(%) level, multiplied by O(10%) for the D decay.
- That still leaves 4 orders of magnitude difference in the production rate between simulation and data.
- Producing enough simulation is difficult, and usually requires lots of tricks.

 $B \to D^{**} \tau \nu$

• The next one is related to $B \to D^{**} \tau \nu$ decays.

BaBar, Ph	ys. Rev.	D 88,	072012	(2013)
-----------	----------	-------	--------	--------

		Frac	tional u	ncertainty	(%)	
Source of uncertainty	$\mathcal{R}(D^0)$	$\mathcal{R}(D^{*0})$	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
Additive uncertainties						
PDFs						
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5
$\mathcal{B}(\overline{B} \to D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6
Cross-feed constraints						
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4
Isospin constraints	_	_	_	_	1.2	0.3
Fixed backgrounds						
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3
Multiplicative uncertainties						
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2	0.2	0.2	0.2	0.2	0.2
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0

LHCb, PHYS. REV. LETT. 115, 111803 (2015)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_\mu$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
${\cal B}(au^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

 $B \to D^{**} \tau \nu$

• People are worried about $B \to D^{**} \tau \nu$, it has its own puzzles.

 For the LHCb measurement it is controlled using data with an extra pion added to the D*.

Patrick Owen

Form factor uncertainties

• The uncertainty on QCD has an impact on the measurements.

BaBar, Pl	hys. Rev.	D 88,	072012	(2013)
-----------	-----------	-------	--------	--------

	Fractional uncertainty (%)					
Source of uncertainty	$\mathcal{R}(D^0)$	$\mathcal{R}(D^{*0})$	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
Additive uncertainties						
PDFs						
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5
$\mathcal{B}(\overline{B} \to D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6
Cross-feed constraints						
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4
Isospin constraints	_	—	—	_	1.2	0.3
Fixed backgrounds						
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3
Multiplicative uncertainties						
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2	0.2	0.2	0.2	0.2	0.2
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0

LHCb, PHYS. REV. LETT. 115, 111803 (2015)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$B^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_\mu$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Form factor uncertainties

• The uncertainty on QCD has an impact on the measurements.

$\tau \rightarrow 3\pi \nu$

Latest LHCb measurement

Phys. Rev. Lett. 120, 171802 (2018)

- First measurement with $\tau^+ \to \pi^+ \pi^- \pi^+ X$ decays.
 - No background from $B \to D^{*(*)} \ell \nu$.

 $\frac{R(B^{0} \rightarrow D^{*-} \tau^{+} v_{\tau})}{(B^{0} \rightarrow D^{*-} \tau^{+} v_{\tau})} \approx \frac{1}{(B^{0} \rightarrow D^{*$

$$\begin{split} K_{had}(D^*) &= \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \\ &= \frac{N(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{N(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)} \times \frac{1}{BR(\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau})} \times \frac{\varepsilon(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)}{\varepsilon(B^0 \to D^{*-} \tau^+ \nu_{\tau})} \\ K_{had}(D^*) &= \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \\ K_{had}(D^*) &= \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \\ K_{had}(D^*) &= \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})} \end{split}$$

• Why don't we just directly measure $R(D^*)$? $R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)}{BR(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})}$

$$R(D^*) = I_{had} \bigvee {}^{k} \times \frac{B}{2}$$

Particle flavour fever school

Patrick Owen

Flight distance cut

- Phys. Rev. Lett. 120, 171802 (2018)
- Huge background from $B \to D^{(**)} 3\pi X$
- Reduced by requiring a flight significance $> 4 \operatorname{GBR}(B^0 \to D^{*-} \tau^+ v_{\tau}) = \frac{N(B^0 \to D^{*-} \tau^+ v_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} = K_{\overline{had}} N(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)$

• Why don't the B-factories do this?

The 3_π dynamics

- Phys. Rev. Lett. 120, 171802 (2018)
- Largest background from $B \to D^{(*)}(D_s^+ \to 3\pi X)X$
- Exploit the difference in the 3π dynamics between the D and the $\tau_{K_{had}}(\dot{D}^*) = \frac{B}{BF}$

BDT discriminant

• Largest background from $B \to D^{(*)}(D_s^+ \to 3\pi X)X$

- Can combine this information into a multivariate classifier.
 - A multivariate classifier is something which uses machine learning to exploit correlations between variables.
 - A good example is a BDT.

What is a BDT?

A decision tree is a series of selections which can isolate \bullet different categories of data.

Survivors of Titanic

- A decision tree can be trained on data by, splitting the sample recursively until the discrimination doesn't get any better.
- Sequential selections can exploit correlations in features.

Boosting

- The problem is that decision trees can quite easily follow statistical fluctuations in the data, known as overfitting.
- This can be remedied by creating an ensemble of trees (boosting).
- Several approaches exist, the easiest to imagine is bagging, whereby a random sample of the input is taken and a used to train a decision tree.
- More efficient methods also exist e.g. AdaBoost.

Fit variables

- Once the BDT has been combined, fit it to discriminate background from signal.
- Also use the τ decay time as it is generally a bit shorter than charm hadrons.
- Final variable is q², similar to the muonic analysis.

Signal fit

Control over backgrounds

Phys. Rev. Lett. 120, 171802 (2018)

- Both the B and D decay part of $B \to D^{(*)}(D_s^+ \to 3\pi X)X$ need to be controlled.
- Isolate the background by looking at the low BDT region.
- This is used to control the D_s+ decay.

 $\frac{(B^{0} \rightarrow D^{*-} \tau^{+} v_{\tau})}{(\Phi^{0} \rightarrow D^{*-} \tau^{+} v_{\tau})} \approx \frac{1}{1} \sum_{\substack{n \in \mathbb{Z}^{0} \to \mathbb{Z}^{n} \to \mathbb{Z}^$

$$K_{had}(D^*) = \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(D^*)}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^*)$$

Particle flavour fever school

Combination

• All experiments see an excess of signal w.r.t. SM prediction.

Horizontal bands refer to R(D*), ellipses refer to both R(D*,D)

Latest HFLAV average [1] quotes 3.80 from SM prediction

[1] https://hflav-eos.web.cern.ch/hflav-eos/semi/ summer18/RDRDs.html

Patrick Owen

Particle flavour fever school

What now?

• Main priority is to clarify the existence of any NP signal.

Improve the precision of R_{D*} ratios.

Explore other b-hadron systems.

Particle flavour fever school

• We are already doing this with the current data in hand College

Patrick Owen

 e.g. charged Higgs boson would mean isotropic distribution of the lepton pairs.

Latest result from Belle

arXiv:1612.00529, submitted to PRL

• First result to use hadronic $\tau \to \pi \nu$ decays.

patrick Owen o, Martin Camalich, SW, 2017]

 Also first measurement to measure τ polarisation.

52

Future measurements

- We at LHCb are furiously working on several R measurements.
 - R(D), $R(\Lambda_c)$ with muonic and semileptonic tau decays.
 - Some of these will try to relax the physics assumptions behind the signal models.
 - We are also looking at the feasibility of an angular analysis, resolution is key here.
- Belle-II will also come online soon: they will also make precise measurements including ones inaccessible to LHCb: e.g. B—>τν.

Half-time

- LHCb and the B-factories have collected a huge number of B decays and have tools to study them in great detail.
- They all point towards a larger than expected decay rate of $B \rightarrow D^* \tau \nu$ but no single measurement is above 3σ still inconslusive.
- The measurements are difficult and complicated, but I hope I have convinced you that the systematic uncertainties are well understood and calculated.
- The future is bright for these measurements, with new R measurements and angular analyses on the horizon.
- Next lecture we will move to $b \to s\ell\ell$ which is rather different (easier) experimental challenge.

Back-ups

R(D*) control samples

Anti-isolate signal to enrich particular backgrounds.

$R(D^*)$ 3D fit

3D fit used to discriminate signal from backgrounds

Good agreement seen everywhere

Can 2HDM explain it?

- BaBar's sees a similar enhancement to both R(D) and R(D*).
 - This isn't what you'd expect from a 2HDM type II.

Testing LFU with other hadrons

• Unlike at the B-factories, b-quarks at the LHC are free to hadronise into all sorts of different flavoured particles.

• Testing lepton universality here involves measuring the ratio $R(J/\psi)$.

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$$

The main issue

- Due to the low B_c production, get a huge amount of background from $B_{--}>J/\psi$ h X decays, where the h decays into a muon.
- Control samples obtained in the data by reversing the muon ID requirements, and selecting specific hadron species using the RICH information.

 Main difficulty is controlling cross-feed between the different hadron species.

$R(J/\psi)$ measurement

- Similar approach to R(D*) measurement.
- Main difference due to large presence of fake muon background (due to low B_c production rate).

$$\mathcal{R}(J/\psi) = 0.71 \pm 0.17 \,(\text{stat}) \pm 0.18 \,(\text{syst})$$

• Within two sigma of SM and NP models