Flavor physics in the SM and beyond

Lecture I: Concepts of Quark Flavor Physics

Lecture ll: Effective Weak Hamiltonians
- Effective weak interactions at low energies

« Concepts of effective field theory

Lecture lll: Connecting UV Physics to Experiments



Lecture ll; Effective Weak Hamiltonians
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Effective field theory (a first encounter)

Weak-interaction processes are characterized by many different
mass scales (mt, mw, mz, mp, Mg, ...), which make higher-order
calculations exceedingly difficult

Effective field theory is a powerful tool in guantum field theory:
 systematic formalism for the analysis of multi-scale problems
- simplifies practical calculations, often makes them feasible

- basis of factorization (i.e. scale separation) and resummation
of large logarithmic terms

- particularly important in QCD, where short-distance effects are
calculable perturbatively but long-distance effects are not
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Effective field theory (a first encounter)

o At low energies, the exchange of heavy, virtual
particles (M»E) leads to local effective interactions

M <

exchange of heavy, virtual particles induced, effective local interactions
between light SM particles at low energies

o Effective field theory offers systematic description
of effects of modes with large virtualities through
an expansion in local operators
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W exchange at low energy (Fermi theory)

e Fermi theory of weak interactions describes
W-boson exchange in terms of local 4-fermion

couplings
e Consider: b .

b u

E«MW

W — (local operator)

A% €

e Fermi constant:  G./v2 =g,2/8M,?
- determines scale of weak interactions



W exchange at low energy (Fermi theory)

o Semileptonic decay: QCD corrections influence
both graphs in same way

e Resulting “effective”
interaction for E«M,:

— Vi C1 (1) ey apy"br
V2 \ g
C —_

1 1

O

 Scaling 1/M,? for d=6 operators explains weakness
of “weak” interactions

44



W exchange at low energy (Fermi theory)

« W exchange between four different quark fields

(nonleptonic decays):
TN

e At tree level, analogous treatment as before

b
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W exchange at low energy (Fermi theory)

e Complications for loop graphs:

e Naive Taylor expansion of W-boson propagator no

longer justified!
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W exchange at low energy (Fermi theory)

e Problem with large loop momenta:

1 1 p?
D D
/d P ]\[‘2‘ ])2 f(p) ?é A[‘Q‘ /d P (1 + —]\[‘21 “+ ) f(]))

e But no differences at low loop
momenta!

e Effect can be calculated and
corrected for using perturbation
theory, since effective coupling :
a.(My) is small
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W exchange at low energy (Fermi theory)

e Resulting effective interaction:

AGp ., p -y i ~ .
Lot = ——= Vee Vb [Cl(ﬂ) 'SJL”/M-C;: upy"by + Co(p) SLA/"H-CJL Ty sela 'bL]

\/5 CS

with Wilson coefficients:

B 3 ag(p) [, Mz 11 5
Ci(p) =1+ R (ln 2 c + O(ay)

— accounts for effects of hard gluons (p~My,)
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Main idea of effective field theory

e Separation of short- and long-distance effects;

schematically:
My k2 My qk2 7 dk? Ci(w)
/ k—f/#? e
» Short-distance effects (p~M,,) are (O,(w))

perturbatively calculable

e Long-distance effects must be treated using
nonperturbative methods

e Dependence on arbitrary separation scale u
controlled by RG equations

49

-+ MW

- Aqep



Main idea of effective field theory

e Why useful?

e Any sensitivity to high scales (including to physics
beyond the Standard Model) can be treated using
perturbative methods:

Ci(u) = MMy, m,u) + GNP (Mp,8yp, )

e Nonperturbative methods (operator product

expansion, lattice gauge theory, ...) usually only
work at low scales (typically u~few GeV)
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FCNC processes

« While generation-changing couplings of W bosons
to quarks exist, flavor-changing neutral currents
such as

b—ssy, b—>sZ% b—ssvv, b—ssdd, bd—db, etc.
(and others, also for light quarks)

do not exist as elementary vertices in the Standard
Model (GIM mechanism)
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FCNC processes

e But such processes can be induced at loop level,
e.g.:

penguin diagram

loop-induced
decay b—svv
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FCNC processes

o Effective interaction at low energies

(E<«My,M;,m,):
b >< S
v | Y

C(MW7MZ)mt) M)
penguin diagram approximated
by local 4-fermion operator
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FCNC processes

e Detailed analysis (penguin autopsy) exhibits that
GIM mechanism is “incomplete” in this case:

q;ﬁ,t%b‘@f(ﬂ%i,...)=thVtZ[f(%,...)—f(zé...)]
. ‘ ' 9 5
b & WV | + Va V2 [f(]%’/ ,...)— f(;;‘;; )]

Unitarity relation:
VieVie + Vo Ve + Vip Ve = 0

— residual effect due to nontrivial mass
dependence, often oc(m./My)? or In(m,/u)
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FCNC processes

o Rich structure of couplings of Z% g,y lead to a
plethora of effective local d=6 operators

e Consider, e.g., decays of type b—s+X (or b—d+X,
s—d+X), where X is flavor neutral:

S VeV (GQY+ G0 -Vl Y G

qg=u.,c z'=3,...,10,77,8g

/ /

W-boson exchange | penguin and box graphs |

Gp
Het = ~
V2
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Operator basis

e Current-current operators (W exchange):

Qgp) = (5;pi)v—a (Pjbj)v_a b p=u,c b p=u,c

Qép) = (50 )v—a (Pjbi)v_a

(1g2)vea =" (1 £ 75)6]2'

e Results analogous to
earlier discussion):

11 ag( My
Ci(Mw) =1— @ Mw)
6 Am

11 Cks(]\ffw’)
2  A4r

p=u,c s p=u,c s

<— results quoted at
u=M,, for simplicity

Co(Myy) =
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Operator basis

e QCD penguin operators:
Qs = (5:bi)v-a Z (3j4j)v-a

q=u.d.s.c.b

Qi= (Bibj)v_a Y (Gai)v-a
q=u.,d,s.c,b

Qs = (Bibi)v_a > (G4)v+a
q=u.d.s.c.b

Qe = (Sibj)v-a Z (759:)v+a
q=u.d,s,c,b

e Results:
| , avs(Myw )
Cy(My) = Cs(My) = ——E
3( W ) o( W ) 0 (A[I%V) A7

S (T as (M)
C ]\’[ 1) — C ]\[ 7 g t
4(Myw) 6(Mw) EO (]\[%/) =
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Loop function:

~

Ey(x) = _r +O(1/x)



Operator basis

o Electroweak penguin operators:

3

Qr = (Sb)v-a Y 50 (T45)v+a b q b q
q=u.d,s,c,b
3
Qs = (Sibj)v_a Z € (G4 )v+a
q=u,d,s,c,b
_ 3
Qo = (Sib)v_a > 5¢a (T495)v-a
q=u.d,s,c,b

3
Qu = (Eb)v-a ) 5% (G%)v-a

q=u,d,s,c,b

e Results:

Loop functions:

2 /
Co(Myy) = f 2 (M) Co(Myy) = Cro(Myy) = 0 z 4 125
7 W ]\[‘247 67 ) 8 W 10 W f(:l’) — 5 + g Inr — % + 0(1/21’)
2 2 /
. my 1 my < ( M, W ) . E § , )
CQ(A‘[W’ ) - [f <A[€V) + SiIlQ 9[/‘/ g (]\[I?V)] 47‘_ g('T) - 2 2 hl Z + O(l/l)
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Operator basis

chirality flip o« my

e Dipol operators: /
b
ent
Q?’y — _ggb §O'w, (]. +’)’5) FHrY b
Qsg = _IsT SO (L+795) Gt b

72

e Results (x=m2/M,?) :
1

Cry(Mw) = =5 +O(1/x) That’ s it !
. (apart from operators
Cso( My ) = =t O(1/z) containing leptons ...)

|

but these are most relevant for the
Rk anomalies
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Operator basis for B—K*|+I- transitions

o In complete analogy to the case of four quarks,
one finds that the relevant operators are:

4Gy
Hog = 7 thVtslG 5 Z (C;0; + CIO}) + h.c.
with:
O7 = "2 (30, Prb) F", 0% = (50, PLb) F*
(& (&
Og = (57, PLb)(E"0) Oy = (57uPrb)((+"0)

O10 = (57, PLb) Ly y50) , Ot = (57uPrb) (€7 5¢)
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Derivation of the effective Lagrangian

Consider a QFT with a characteristic high-energy scale M
We are interested in performing experiments at energies £ < M

Step 1: Choose a cutoff A < M and divide all guantum fields
into high- and low-frequency components (w > A and w < A):

6= 6n+0n ) A
Recall: T ]‘/{

dgk —1k-x T ik-x
2@ = | GrypaE, (“’“6 e )
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Derivation of the effective Lagrangian

Consider a QFT with a characteristic high-energy scale M
We are interested in performing experiments at energies £ < M

Step 1: Choose a cutoff A < M and divide all guantum fields
into high- and low-frequency components (w > A and w < A):

6= 6n+0n )

Physics at low energies E < A is entirely described in terms of
the fields ¢; Green functions of these fields can be derived
from the generating functional:

Z[JL] = /D¢L D¢H ei8(¢La¢H)+idexJL(gg) o1 (z)
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Derivation of the effective Lagrangian

Step 2: Since the high-frequency fields ¢y do not appear in the

generating functional, we can “integrate them out” in the path
iIntegral:

217, = / Db, NG [ P2 11@) 61

[eiSA(¢L) — /D(bH S (Pr,bm) }

and Sa (¢ ) is called the Wilsonian effective action

where

Dependence on the cutoff A enters via the condition on the
frequencies of the fields
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Derivation of the effective Lagrangian

Step 3: Effective action is non-local on the scale At ~ 1/w,

corresponding to the propagation of high-energy modes that
have been removed from the Lagrangian

Since the remaining fields have energies w < A, the non-local
effective action can be expanded in an infinite series of local
operators:

Saor) = [ ds L3

where:

[ Eeﬂ Z gi Qz ¢L }

/ N

coupling constants basis of local operators built out of
(Wilson coefficients) fields gbL and their derivatives
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Dimensional analysis

Does a Lagrangian consisting of an infinite number of
interactions and hence an infinite number of (renormalized)
coupling constants give any predictive power?

- Not if one adopts an old-fashioned view about renormalization
and renormalizable QFTs, but not all is lost!

We can use naive dimensional analysis to estimate the size of
individual terms in the infinite sum to any given matrix element

Adopt units where h=c=1, hence [m| = [E] = [p] = [z7!] = [t7]
are all measured in the same units (mass units)
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Dimensional analysis

Denote by [g;] = —; the mass dimension of the coupling
constants in the effective Lagrangian

Since by assumption the theory has only a single fundamental
scale M, it follows that:
g =C; M~

where by naturalness we expect that Ci= O(1)

At low energy, it follows that the contribution of a given term
gi Qi to an observable scales like:

4 )

- J
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Dimensional analysis

At low energy, it follows that the contribution of a given term
gi Qi to an observable scales like:

4 )

\ J

Therefore, operators with small v; are most important for £ < M
and there is a finite number of such operators

This is what makes the effective Lagrangian useful !

Depending on the precision goal, one can truncate the infinite
sum over interactions by only retaining operators whose ~;
values are smaller than a certain value
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Dimensional analysis

Since the Lagrangian has mass dimension D = 4, it follows that
the operators have mass dimension:

0; = |Qi]| =D+

Hence we can summarize:

Dimension Importance for £ — 0 Terminology
;< D, v <0 gTOWS relevant operators
(super-renormalizable)
=D, =0 constant marginal operators
(renormalizable)
0 >D, v >0 falls irrelevant operators

(non-renormalizable)

Only a finite number of relevant and marginal operators exist !
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Dimensional analysis

Comments:
Dimension Importance for £ — 0 Terminology

0; < D, v <0 grows relevant operators
(super-renormalizable)

=D, =0 constant marginal operators

(renormalizable)

0> D, v >0 falls irrelevant operators

(non-renormalizable)

- “relevant” operators are usually unimportant, since they are
forbidden by some symmetry (else “hierarchy problem?)

- “marginal” operators are all there is in renormalizable QFTs

- “irrelevant” operators are the most interesting ones, since
they tell us something about the fundamental scale M
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Comments

Examples of effective field theories:

High-energy theory | Fundamental scale | Low-energy theory
Standard Model My, ~ 80 GeV Fermi theory
GUT Mcur ~ 10 GeV | Standard Model
String theory Mg ~ 10'® GeV QFT
11-dim. M theory String theory
QCD mp ~ 5 GeV HQET, NRQCD
Mchsm ~ 1 GeV ChPT

- SM and GUTs are perturbative QFTs
- Fermi theory contains only irrelevant operators (4 fermions)

« String/M theory: fundamental theory is non-local and even
spacetime breaks down at short distances
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Comments

Examples of effective field theories:

High-energy theory

Fundamental scale

Low-energy theory

Standard Model

GUT
String theory
11-dim. M theory

QCD

MGUT ~ 1016 GeV
Mg ~ 10 GeV

mp ~ 5 GeV
Mchsm ~ 1 GeV

Fermi theory
Standard Model
QFT
String theory

HQET, NRQCD
yPT

- QCD at low energy: example with strong coupling, where the
relevant degrees of freedom at low energy (hadrons) are
different from the degrees of freedom of QCD

- Low-energy theory is strongly coupled, yet yPT is useful
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