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Lecture III: Connecting UV Physics to Experiments



Lecture II: Effective Weak Hamiltonians



Effective field theory (a first encounter)

Weak-interaction processes are characterized by many different 
mass scales (mt, mW, mZ, mb, mK, …), which make higher-order 
calculations exceedingly difficult


Effective field theory is a powerful tool in quantum field theory:

• systematic formalism for the analysis of multi-scale problems

• simplifies practical calculations, often makes them feasible

• basis of factorization (i.e. scale separation) and resummation 

of large logarithmic terms

• particularly important in QCD, where short-distance effects are 

calculable perturbatively but long-distance effects are not
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Effective field theory (a first encounter)

•  At low energies, the exchange of heavy, virtual 
particles (M»E) leads to local effective interactions 

•  Effective field theory offers systematic description 
of effects of modes with large virtualities through 
an expansion in local operators 

exchange of heavy, virtual particles  
between light SM particles 

M 

M 

M 

induced, effective local interactions 
at low energies 
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W exchange at low energy (Fermi theory)

•  Fermi theory of weak interactions describes       
W-boson exchange in terms of local 4-fermion 
couplings 

•  Consider: 

•  Fermi constant: 
–  determines scale of weak interactions 

E«MW 

GF/√2 =g2
2/8MW

2 

(local operator) 
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W exchange at low energy (Fermi theory)

•  Semileptonic decay: QCD corrections influence 
both graphs in same way 

•  Resulting �effective�        
interaction for E«MW: 

•  Scaling 1/MW
2 for d=6 operators explains weakness 

of “weak” interactions 

C1=1 
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W exchange at low energy (Fermi theory)

•  W exchange between four different quark fields 
(nonleptonic decays): 

•  At tree level, analogous treatment as before 

E«MW 

c s 
c s 
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W exchange at low energy (Fermi theory)

•  Complications for loop graphs: 

•  Naïve Taylor expansion of W-boson propagator no 
longer justified! 
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W exchange at low energy (Fermi theory)

•  Problem with large loop momenta: 

•  But no differences at low loop        
momenta!  

•  Effect can be calculated and         
corrected for using perturbation     
theory, since effective coupling     
αs(MW) is small 
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W exchange at low energy (Fermi theory)

•  Resulting effective interaction: 

   with Wilson coefficients: 

→ accounts for effects of hard gluons (p~MW) 
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Main idea of effective field theory

•  Separation of short- and long-distance effects; 
schematically: 

•  Short-distance effects (p~MW) are      
perturbatively calculable   

•  Long-distance effects must be treated using 
nonperturbative methods 

•  Dependence on arbitrary separation scale µ 
controlled by RG equations 

MW 

ΛQCD 

µ 

Ci(µ) 

〈Oi(µ)〉 
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Main idea of effective field theory

•  Why useful? 

•  Any sensitivity to high scales (including to physics 
beyond the Standard Model) can be treated using 
perturbative methods: 

•  Nonperturbative methods (operator product 
expansion, lattice gauge theory, …) usually only 
work at low scales (typically µ~few GeV)  

Ci(µ) = Ci
SM(MW,mt,µ) + Ci

NP(MNP,gNP,µ) 
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FCNC processes

•  While generation-changing couplings of W bosons 
to quarks exist, flavor-changing neutral currents 
such as 

   do not exist as elementary vertices in the Standard 
Model (GIM mechanism) 

b→sγ,  b→sZ0,  b→sνν,  b→sdd,  bd→db,  etc. 
(and others, also for light quarks) 
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FCNC processes

•  But such processes can be induced at loop level, 
e.g.: 

b s 
t t 
W 

Z 
ν ν 

loop-induced  
decay b→sνν 

penguin diagram 
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FCNC processes

•  Effective interaction at low energies 
(E«MW,MZ,mt): 

Z 

b s 

ν ν 
C(MW,MZ,mt,µ) 

penguin diagram approximated 
by local 4-fermion operator 
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FCNC processes

•  Detailed analysis (penguin autopsy) exhibits that 
GIM mechanism is �incomplete” in this case: 

b s 
q= 

u,c,t 

W 

Z 
ν ν 

Unitarity relation: 
 
 
→  residual effect due to nontrivial mass  
dependence, often ∝(mt/MW)2 or ln(mt/µ) 
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FCNC processes

•  Rich structure of couplings of Z0,g,γ lead to a 
plethora of effective local d=6 operators 

•  Consider, e.g., decays of type b→s+X (or b→d+X,  
s→d+X), where X is flavor neutral: 

W-boson exchange penguin and box graphs 
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Operator basis

•  Current-current operators (W exchange): 

•  Results analogous to        
earlier discussion): 

p=u,c b 

p=u,c s 

p=u,c b 

p=u,c s 

←  results quoted at 
µ=MW for simplicity 
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Operator basis

•  QCD penguin operators: 

•  Results: 

s b 

Loop function: 
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Operator basis

•  Electroweak penguin operators: 

•  Results: 

s b s b 

Loop functions: 
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Operator basis

•  Dipol operators: 

•  Results (x=mt
2/MW

2) : 

chirality flip ∝ mb 

That�s it ! 
(apart from operators  
containing leptons …) 

but these are most relevant for the 

RK(*) anomalies
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Operator basis for B→K*l+l- transitions

Implications of b ! s measurements
a

Wolfgang Altmannshofer1 and David M. Straub2,b
1 Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, Canada N2L 2Y5

2 Excellence Cluster Universe, TU München, Boltzmannstr. 2, 85748 Garching, Germany

The recent updated angular analysis of the B ! K
⇤
µ
+
µ
� decay by the LHCb collaboration

is interpreted by performing a global fit to all relevant measurements probing the flavour-
changing neutral current b ! sµ

+
µ
� transition. A significant tension with Standard Model

expectations is found. A solution with new physics modifying the Wilson coe�cient C9 is
preferred over the Standard Model by 3.7�. The tension even increases to 4.2� including
also b ! se

+
e
� measurements and assuming new physics to a↵ect the muonic modes only.

Other new physics benchmarks are discussed as well. The q
2 dependence of the shift in C9 is

suggested as a means to identify the origin of the tension – new physics or an unexpectedly
large hadronic e↵ect.

1 Introduction

Rare B and Bs decays based on the b ! s flavour-changing neutral current transition are sen-
sitive to physics beyond the Standard Model (SM). Recent measurements at the LHC, comple-
menting earlier B-factory results, have hugely increased the available experimental information
on these decays. Interestingly, several tensions with SM predictions have shown up in the data,
most notably

• several tensions at the 2–3� level in B ! K⇤µ+µ� angular observables in 1 fb�1 of LHCb
data taken during 2011 1;

• a 2.6� deviation from lepton flavour universality (LFU) in B+
! K+`+`� decays measured

by LHCb, including the full 3 fb�1 dataset 2.

Several model-independent theoretical analyses 3,4,5,6,7,8,9,10 have shown that both anomalies
could be explained by new physics (NP). Today, the LHCb collaboration has released an update
of the analyis of B ! K⇤µ+µ� angular observables based on the full 3 fb�1 dataset 11, finding a
significant tension in particular in the angular observable P 0

5. The aim of this talk is to interpret
these measurements by performing a global model-independent fit to all available data. The
results are updates of an analysis published recently 12 (and building on earlier work 13,14,4),
incorporating the new LHCb measurements. Crucially, the fit makes use of a combined fit 15 to
B ! K⇤ form factors from light-cone sum rules 15 and lattice QCD 16,17 published recently.

2 Model-independent analysis

2.1 Fit methodology

The e↵ective Hamiltonian for b ! s transitions can be written as

He↵ = �
4GF
p
2
VtbV

⇤
ts

e2

16⇡2

X

i

(CiOi + C 0
iO

0
i) + h.c. (1)

Considering NP e↵ects in the following set of dimension-6 operators,

O7 =
mb

e
(s̄�µ⌫PRb)F

µ⌫ , O0
7 =

mb

e
(s̄�µ⌫PLb)F

µ⌫ , (2)

O9 = (s̄�µPLb)(¯̀�
µ`) , O0

9 = (s̄�µPRb)(¯̀�
µ`) , (3)

O10 = (s̄�µPLb)(¯̀�
µ�5`) , O0

10 = (s̄�µPRb)(¯̀�
µ�5`) , (4)

aTalk presented at the 50th Rencontres de Moriond (Electroweak Session), La Thuile, 20 March 2015.
bSpeaker.
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•In complete analogy to the case of four quarks,  
   one finds that the relevant operators are: 

   with:
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Artwork by Iain Stewart

Concepts of Effective Field Theory



Derivation of the effective Lagrangian

Consider a QFT with a characteristic high-energy scale M

We are interested in performing experiments at energies

Step 1:  Choose a cutoff              and divide all quantum fields 
into high- and low-frequency components (           and           ):


Recall:


often makes such calculations feasible. As we will discuss, EFT also provides a new, modern
meaning to “renormalization”.

The main idea of EFT is simply stated: Consider a quantum field theory with a large,
fundamental scale M . This could be the mass of a heavy particle, or some large (Euclidean)
momentum transfer. Suppose we are interested in physics at energies E (or momenta p) much
smaller than M . How can we expand scattering or decay amplitudes in powers of E/M? The
answer to this question proceeds in several steps:

1. Choose a cutoff Λ < M and divide the fields of the theory into low-frequency and
high-frequency modes,

φ = φL + φH , (2)

where φL contains the Fourier modes with frequency ω < Λ, while φH contains the
remaining modes with frequency ω > Λ. We can think of the cutoff as a “threshold
of ignorance” in the sense that we may pretend to know nothing about the theory for
scales above Λ (which is indeed often the case). By construction, low-energy physics
is described in terms of the φL fields. Everything we ever wish to know about the
theory (Feynman diagrams, scattering amplitudes, cross sections, decay rates, etc.) can
be derived from vacuum correlation functions of these fields. These correlators can be
obtained using

⟨0| T{φL(x1) . . .φL(xn)} 0⟩ =
1

Z[0]

(
−i

δ

δJL(x1)

)
. . .

(
−i

δ

δJL(xn)

)
Z[JL]

∣∣∣
JL=0

, (3)

where

Z[JL] =

∫
DφL DφH eiS(φL,φH)+i

∫
dDx JL(x) φL(x) (4)

is the generating functional of the theory. Here S(φL,φH) =
∫

dDxL(x) is the action, D
is the dimension of space-time, and we have only included sources JL for the light fields,
as this suffices to compute the correlation functions in (3).

2. In the next step, we perform the path integral over the high-frequency fields. This yields

Z[JL] ≡
∫

DφL eiSΛ(φL)+i
∫

dDx JL(x) φL(x) , (5)

where

eiSΛ(φL) =

∫
DφH eiS(φL,φH) (6)

is called the “Wilsonian effective action”. Note that, by construction, this action depends
on the choice of the cutoff Λ used to define the split between low- and high-frequency
modes. SΛ is non-local on scales ∆xµ ∼ 1/Λ, because high-frequency fluctuations have
been removed from the theory. The process of removing these modes is often referred to
as “integrating out” the high-frequency fields in the functional integral.

4

E ⌧ M

⇤ < M
! > ⇤ ! < ⇤

E

MM
⇤

�(x) =

Z
d3k

(2⇡)3 2Ek

⇣
ak e

�ik·x + a†k e
ik·x

⌘
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Derivation of the effective Lagrangian
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E ⌧ M
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Physics at low energies              is entirely described in terms of 
the fields      ; Green functions of these fields can be derived 
from the generating functional: 
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4

E ⌧ ⇤
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Derivation of the effective Lagrangian

Step 2:  Since the high-frequency fields      do not appear in the 
generating functional, we can “integrate them out” in the path 
integral:


where


and              is called the Wilsonian effective action 


Dependence on the cutoff     enters via the condition on the 
frequencies of the fields 
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Derivation of the effective Lagrangian

Step 3:  Effective action is non-local on the scale                  , 
corresponding to the propagation of high-energy modes that 
have been removed from the Lagrangian 

Since the remaining fields have energies             , the non-local 
effective action can be expanded in an infinite series of local 
operators:


where:

�t ⇠ 1/!

! < ⇤
3. In the final step, we expand the non-local action functional in terms of local operators

composed of light fields. This process is called the (Wilsonian) operator-product expan-
sion (OPE). This expansion is possible because E ≪ Λ by assumption. The result can
be cast in the form

SΛ(φL) =

∫
dDxLeff

Λ (x) , (7)

where
Leff

Λ (x) =
∑

i

gi Qi(φL(x)) . (8)

This object is called the “effective Lagrangian”. It is an infinite sum over local operators
Qi multiplied by coupling constants gi, which are referred to as Wilson coefficients. In
general, all operators allowed by the symmetries of the theory are generated in the
construction of the effective Lagrangian and appear in this sum.

Since there is always an infinite number of such operators, the question arises: How can
the effective low-energy theory be predictive? This is where the simple, but powerful trick of
“naive dimensional analysis” comes to play. As is common practice in high-energy physics,
let us work in units where h̄ = c = 1. Then [m] = [E] = [p] = [x−1] = [t−1] are all measured
in the same units. We denote by [gi] = −γi the mass dimension of the effective couplings gi.
It follows that

gi = Ci M
−γi (9)

with dimensionless coefficients Ci. Since by assumption there is only a single fundamental
scale M in the theory, we expect that Ci = O(1). This assertion is known as the hypothesis
of “naturalness”. Unless there is a specific mechanism that could explain the smallness of the
dimensionless numbers Ci, we should assume those numbers to be of O(1). The presence of
unusually large (e.g. 106) or small (e.g. 10−6) numbers in a theory would appear “unnatural”
and call for further explanation.

At low energy (E ≪ Λ < M), the contribution of a given operator Qi in the effective
Lagrangian to an observable (which for simplicity we assume to be dimensionless) is expected
to scale as

Ci

(
E

M

)γi

=

⎧
⎪⎨

⎪⎩

O(1) ; if γi = 0,

≪ 1 ; if γi > 0,

≫ 1 ; if γi < 0.

(10)

It follows that only operators whose couplings have γi ≤ 0 are important at low energy. This
very fact is what makes the OPE a useful tool. Depending on the precision goal, one may
truncate the series in (8) at a given order in E/M . Once this is done, only a finite (often
small) number of operators Qi and couplings gi need to be retained.

Let us go through the above arguments once again, being slightly more careful. Assuming
weak coupling,1 we can use the free action to assign a scaling behavior with E to all fields and

1Interactions can change the naive scaling dimensions γi, as we will see later. For this reason, the γi are
referred to as “anomalous dimensions”.
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Dimensional analysis

Does a Lagrangian consisting of an infinite number of 
interactions and hence an infinite number of (renormalized) 
coupling constants give any predictive power?


• Not if one adopts an old-fashioned view about renormalization 
and renormalizable QFTs, but not all is lost!


We can use naive dimensional analysis to estimate the size of 
individual terms in the infinite sum to any given matrix element


Adopt units where                 , hence                                                  
are all measured in the same units (mass units)

~ = c = 1
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Dimensional analysis

Denote by                  the mass dimension of the coupling 
constants in the effective Lagrangian


Since by assumption the theory has only a single fundamental 
scale M, it follows that:          


where by naturalness we expect that Ci = O(1)


At low energy, it follows that the contribution of a given term      
gi Qi to an observable scales like:

[gi] = ��i
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Dimensional analysis

At low energy, it follows that the contribution of a given term      
gi Qi to an observable scales like:


Therefore, operators with small      are most important for             
and there is a finite number of such operators


This is what makes the effective Lagrangian useful ! 


Depending on the precision goal, one can truncate the infinite 
sum over interactions by only retaining operators whose     
values are smaller than a certain value
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general, all operators allowed by the symmetries of the theory are generated in the
construction of the effective Lagrangian and appear in this sum.

Since there is always an infinite number of such operators, the question arises: How can
the effective low-energy theory be predictive? This is where the simple, but powerful trick of
“naive dimensional analysis” comes to play. As is common practice in high-energy physics,
let us work in units where h̄ = c = 1. Then [m] = [E] = [p] = [x−1] = [t−1] are all measured
in the same units. We denote by [gi] = −γi the mass dimension of the effective couplings gi.
It follows that

gi = Ci M
−γi (9)

with dimensionless coefficients Ci. Since by assumption there is only a single fundamental
scale M in the theory, we expect that Ci = O(1). This assertion is known as the hypothesis
of “naturalness”. Unless there is a specific mechanism that could explain the smallness of the
dimensionless numbers Ci, we should assume those numbers to be of O(1). The presence of
unusually large (e.g. 106) or small (e.g. 10−6) numbers in a theory would appear “unnatural”
and call for further explanation.

At low energy (E ≪ Λ < M), the contribution of a given operator Qi in the effective
Lagrangian to an observable (which for simplicity we assume to be dimensionless) is expected
to scale as

Ci

(
E

M

)γi

=

⎧
⎪⎨

⎪⎩

O(1) ; if γi = 0,

≪ 1 ; if γi > 0,

≫ 1 ; if γi < 0.

(10)

It follows that only operators whose couplings have γi ≤ 0 are important at low energy. This
very fact is what makes the OPE a useful tool. Depending on the precision goal, one may
truncate the series in (8) at a given order in E/M . Once this is done, only a finite (often
small) number of operators Qi and couplings gi need to be retained.

Let us go through the above arguments once again, being slightly more careful. Assuming
weak coupling,1 we can use the free action to assign a scaling behavior with E to all fields and

1Interactions can change the naive scaling dimensions γi, as we will see later. For this reason, the γi are
referred to as “anomalous dimensions”.

5

67



Dimensional analysis

Since the Lagrangian has mass dimension D = 4, it follows that 
the operators have mass dimension: 


Hence we can summarize:


Only a finite number of relevant and marginal operators exist !

�i = [Qi] = D + �i

Table 1: Classification of operators and couplings in the effective Lagrangian

Dimension Importance for E → 0 Terminology

δi < D, γi < 0 grows relevant operators

(super-renormalizable)

δi = D, γi = 0 constant marginal operators

(renormalizable)

δi > D, γi > 0 falls irrelevant operators

(non-renormalizable)

couplings in the low-energy effective theory. Consider scalar φ4 theory as an example. The
action is

S =

∫
dDx

(
1

2
∂µφ ∂

µφ−
m2

2
φ2 −

λ

4!
φ4

)
. (11)

Using that x ∼ E−1 and ∂µ ∼ E, and requiring that the action scale like O(1) (in units of
h̄), we see that φ ∼ E

D
2
−1. If we denote by δi the mass dimension of an operator Qi, then

γi = δi − D. For the operators in the Lagrangian (11) we find:

δi γi Coupling

∂µφ ∂µφ D 0 1

φ4 2D − 4 D − 4 λ ∼ Λ4−D

φ2 D − 2 −2 m2 ∼ Λ2

More generally, an operator with n1 scalar fields and n2 derivatives has

δi = n1

(
D

2
− 1

)
+ n2 , γi = (n1 − 2)

(
D

2
− 1

)
+ (n2 − 2) . (12)

It follows that for D > 2 only few operators have γi ≤ 0.
A summary of these considerations is presented in Table 1. The common terminology

of “relevant”, “marginal”, and “irrelevant” operators given there is without a doubt one of
the worst misnomers is the history of physics. Really, “relevant” operators are usually unim-
portant, because they are forbidden by a symmetry (else they are disastrous, see below).
“Marginal” operators are all there is in renormalizable quantum field theories. And “irrele-
vant” operators are those that are really interesting, because they teach us something about
physics at the fundamental scale M .

A crucial insight, which one may term the “theorem of modesty”, is that no quantum field
theory is ever complete at arbitrarily high energy. At best it is an EFT valid up to some cutoff
scale Λ. This “scale of ignorance” is often a physical scale, such as the mass of a new particle,
which has not yet been discovered. When interpreted that way, many theories we know and
love can be seen as EFTs:

6
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Dimensional analysis

Comments:


• “relevant” operators are usually unimportant, since they are 
forbidden by some symmetry (else “hierarchy problem”)


• “marginal” operators are all there is in renormalizable QFTs

• “irrelevant” operators are the most interesting ones, since 

they tell us something about the fundamental scale M  

Table 1: Classification of operators and couplings in the effective Lagrangian

Dimension Importance for E → 0 Terminology

δi < D, γi < 0 grows relevant operators

(super-renormalizable)

δi = D, γi = 0 constant marginal operators

(renormalizable)

δi > D, γi > 0 falls irrelevant operators

(non-renormalizable)

couplings in the low-energy effective theory. Consider scalar φ4 theory as an example. The
action is

S =

∫
dDx

(
1

2
∂µφ ∂

µφ−
m2

2
φ2 −

λ

4!
φ4

)
. (11)

Using that x ∼ E−1 and ∂µ ∼ E, and requiring that the action scale like O(1) (in units of
h̄), we see that φ ∼ E

D
2
−1. If we denote by δi the mass dimension of an operator Qi, then

γi = δi − D. For the operators in the Lagrangian (11) we find:

δi γi Coupling

∂µφ ∂µφ D 0 1

φ4 2D − 4 D − 4 λ ∼ Λ4−D

φ2 D − 2 −2 m2 ∼ Λ2

More generally, an operator with n1 scalar fields and n2 derivatives has

δi = n1

(
D

2
− 1

)
+ n2 , γi = (n1 − 2)

(
D

2
− 1

)
+ (n2 − 2) . (12)

It follows that for D > 2 only few operators have γi ≤ 0.
A summary of these considerations is presented in Table 1. The common terminology

of “relevant”, “marginal”, and “irrelevant” operators given there is without a doubt one of
the worst misnomers is the history of physics. Really, “relevant” operators are usually unim-
portant, because they are forbidden by a symmetry (else they are disastrous, see below).
“Marginal” operators are all there is in renormalizable quantum field theories. And “irrele-
vant” operators are those that are really interesting, because they teach us something about
physics at the fundamental scale M .

A crucial insight, which one may term the “theorem of modesty”, is that no quantum field
theory is ever complete at arbitrarily high energy. At best it is an EFT valid up to some cutoff
scale Λ. This “scale of ignorance” is often a physical scale, such as the mass of a new particle,
which has not yet been discovered. When interpreted that way, many theories we know and
love can be seen as EFTs:
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Comments

High-energy theory Fundamental scale Low-energy theory

Standard Model MW ∼ 80 GeV Fermi theory

GUT MGUT ∼ 1016 GeV Standard Model

String theory MS ∼ 1018 GeV QFT

11-dim. M theory . . . String theory

. . . . . . . . .

The arguments just presented provide a new perspective on renormalization. Instead of
a paradigm of renormalizable theories based on the concept of systematic “cancellations of
infinities”, we should adopt the following, more physical point of view:

• Low-energy physics depends on the short-distance structure of the fundamental theory
via relevant and marginal couplings, and possibly through some irrelevant couplings
provided measurements are sufficiently precise.

• “Non-renormalizable” interactions are not forbidden; on the contrary, irrelevant opera-
tors always contribute at some level of precision. Their effects are simply numerically
suppressed if the fundamental scale M is much larger than the typical energies achievable
experimentally.

• These non-renormalizable, “irrelevant” interactions tell us something about the physics
at the cutoff scale Λ ∼ M .

A corrolary to the second item is that, at low energies, all EFTs are “automatically” renor-
malizable quantum field theories, provided that the cutoff scale Λ is large.

The comment about “irrelevant” interactions in the third item is very powerful, so let
us illustrate it with two prominent examples: i) Early measurements of the magnitude and
energy dependence of weak-interaction processes at low energy have indicated the relevance
of a high mass scale M ∼ 100 GeV. This was instrumental in finding the correct theory of
the weak interactions. ii) The local gauge symmetries of the Standard Model allow us to
write down a dimension-5 operator of the type g νT HHν with g ∼ 1/Λ. After electroweak
symmetry breaking, this operator gives rise to a neutrino Majorana mass term mν ∼ v2/Λ,
where v ∼ 246 GeV is the vacuum expectation value of the Higgs field. Seen as an EFT, the
Standard Model thus predicts the existence of neutrino masses, even though there are no right-
handed neutrino fields in the theory. The seasaw mechanism provides an explicit example of
how such a mass term might be realized in a more fundamental theory. But unless we forbid
the dimension-5 operator by imposing a symmetry such a lepton-number conservation, the
existence of neutrino masses is a generic prediction of the Standard Model. The fact that
the observed neutrino masses imply Λ ∼ 1014 GeV not far from the energy scale where the
three gauge couplings approximately unify is a strong argument in favor of the idea of Grand
Unification.

On the other hand, super-renormalizable terms in an effective Lagrangian are problematic.
Consider as an example the operator φ2 in scalar φ4 theory (i.e., the mass term for the scalar
field). In D = 4 dimensions we have δi = 2, γi = −2, and so we expect that m2 ∼ Λ2 by virtue
of the hypothesis of naturalness. Since such large fluctuations are indeed generated in the

7

Examples of effective field theories: 


• SM and GUTs are perturbative QFTs

• Fermi theory contains only irrelevant operators (4 fermions)

• String/M theory: fundamental theory is non-local and even 

spacetime breaks down at short distances

QCD mb ~ 5 GeV HQET, NRQCD

MChSM ~ 1 GeV ChPT
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Comments

Examples of effective field theories: 


• QCD at low energy: example with strong coupling, where the 
relevant degrees of freedom at low energy (hadrons) are 
different from the degrees of freedom of QCD


• Low-energy theory is strongly coupled, yet χPT is useful

High-energy theory Fundamental scale Low-energy theory

Standard Model MW ∼ 80 GeV Fermi theory

GUT MGUT ∼ 1016 GeV Standard Model

String theory MS ∼ 1018 GeV QFT

11-dim. M theory . . . String theory

. . . . . . . . .

The arguments just presented provide a new perspective on renormalization. Instead of
a paradigm of renormalizable theories based on the concept of systematic “cancellations of
infinities”, we should adopt the following, more physical point of view:

• Low-energy physics depends on the short-distance structure of the fundamental theory
via relevant and marginal couplings, and possibly through some irrelevant couplings
provided measurements are sufficiently precise.

• “Non-renormalizable” interactions are not forbidden; on the contrary, irrelevant opera-
tors always contribute at some level of precision. Their effects are simply numerically
suppressed if the fundamental scale M is much larger than the typical energies achievable
experimentally.

• These non-renormalizable, “irrelevant” interactions tell us something about the physics
at the cutoff scale Λ ∼ M .

A corrolary to the second item is that, at low energies, all EFTs are “automatically” renor-
malizable quantum field theories, provided that the cutoff scale Λ is large.

The comment about “irrelevant” interactions in the third item is very powerful, so let
us illustrate it with two prominent examples: i) Early measurements of the magnitude and
energy dependence of weak-interaction processes at low energy have indicated the relevance
of a high mass scale M ∼ 100 GeV. This was instrumental in finding the correct theory of
the weak interactions. ii) The local gauge symmetries of the Standard Model allow us to
write down a dimension-5 operator of the type g νT HHν with g ∼ 1/Λ. After electroweak
symmetry breaking, this operator gives rise to a neutrino Majorana mass term mν ∼ v2/Λ,
where v ∼ 246 GeV is the vacuum expectation value of the Higgs field. Seen as an EFT, the
Standard Model thus predicts the existence of neutrino masses, even though there are no right-
handed neutrino fields in the theory. The seasaw mechanism provides an explicit example of
how such a mass term might be realized in a more fundamental theory. But unless we forbid
the dimension-5 operator by imposing a symmetry such a lepton-number conservation, the
existence of neutrino masses is a generic prediction of the Standard Model. The fact that
the observed neutrino masses imply Λ ∼ 1014 GeV not far from the energy scale where the
three gauge couplings approximately unify is a strong argument in favor of the idea of Grand
Unification.

On the other hand, super-renormalizable terms in an effective Lagrangian are problematic.
Consider as an example the operator φ2 in scalar φ4 theory (i.e., the mass term for the scalar
field). In D = 4 dimensions we have δi = 2, γi = −2, and so we expect that m2 ∼ Λ2 by virtue
of the hypothesis of naturalness. Since such large fluctuations are indeed generated in the

7

QCD mb ~ 5 GeV HQET, NRQCD

MChSM ~ 1 GeV χPT
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