Flavor physics in the SM and beyond

Lecture I: Concepts of Quark Flavor Physics

Lecture II: Effective Weak Hamiltonians

- Effective weak interactions at low energies
- Concepts of effective field theory

Lecture III: Connecting UV Physics to Experiments

Lecture II: Effective Weak Hamiltonians

Effective field theory (a first encounter)

Weak-interaction processes are characterized by many different mass scales (m_t , m_W , m_Z , m_b , m_K , ...), which make higher-order calculations exceedingly difficult

Effective field theory is a powerful tool in quantum field theory:

- systematic formalism for the analysis of **multi-scale problems**
- simplifies practical calculations, often makes them feasible
- basis of factorization (i.e. scale separation) and resummation of large logarithmic terms
- particularly important in QCD, where short-distance effects are calculable perturbatively but long-distance effects are not

Effective field theory (a first encounter)

• At low energies, the exchange of heavy, virtual particles (M»E) leads to local effective interactions

exchange of heavy, virtual particles between light SM particles

induced, effective local interactions at low energies

• Effective field theory offers systematic description of effects of modes with large virtualities through an expansion in local operators

- Fermi theory of weak interactions describes
 W-boson exchange in terms of local 4-fermion couplings
- Consider: b w $E \ll M_W$ (local operator) v e
- Fermi constant: $G_F/\sqrt{2} = g_2^2/8M_W^2$
 - determines scale of weak interactions

- Semileptonic decay: QCD corrections influence both graphs in same way
- Resulting "effective" interaction for E«M_W:

$$\begin{aligned} \mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \, V_{ub} \, C_1(\mu) \, \bar{e}_L \gamma_\mu \nu_L \, \bar{u}_L \gamma^\mu b_L \\ & \swarrow \\ & \mathsf{C}_1 \text{=} 1 \end{aligned}$$

 Scaling 1/M_W² for d=6 operators explains weakness of "weak" interactions

• W exchange between four different quark fields (nonleptonic decays):

• At tree level, analogous treatment as before

• Complications for loop graphs:

• Naïve Taylor expansion of W-boson propagator no longer justified!

• Problem with large loop momenta:

$$\int d^D p \, \frac{1}{M_W^2 - p^2} \, f(p) \neq \frac{1}{M_W^2} \int d^D p \, \left(1 + \frac{p^2}{M_W^2} + \dots\right) f(p)$$

- But no differences at low loop momenta!
- Effect can be calculated and corrected for using perturbation theory, since effective coupling $\alpha_s(M_W)$ is small

• Resulting effective interaction:

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cs}^* V_{ub} \left[C_1(\mu) \,\bar{s}_L^j \gamma_\mu c_L^j \,\bar{u}_L^i \gamma^\mu b_L^i + C_2(\mu) \,\bar{s}_L^i \gamma_\mu c_L^j \,\bar{u}_L^j \gamma^\mu b_L^i \right]$$

with Wilson coefficients:

$$C_1(\mu) = 1 + \frac{3}{N_c} \frac{\alpha_s(\mu)}{4\pi} \left(\ln \frac{M_W^2}{\mu^2} - \frac{11}{6} \right) + O(\alpha_s^2)$$
$$C_2(\mu) = -3 \frac{\alpha_s(\mu)}{4\pi} \left(\ln \frac{M_W^2}{\mu^2} - \frac{11}{6} \right) + O(\alpha_s^2).$$

 \rightarrow accounts for effects of hard gluons (p~M_W)

Main idea of effective field theory

 Separation of short- and long-distance effects; schematically:

$$\int_{-p^2}^{M_W^2} \frac{dk^2}{k^2} = \int_{\mu^2}^{M_W^2} \frac{dk^2}{k^2} + \int_{-p^2}^{\mu^2} \frac{dk^2}{k^2}$$

M

μ

 $C_i(\mu)$

 $\langle O_i(\mu) \rangle$

- Short-distance effects (p~M_W) are perturbatively calculable
- Long-distance effects must be treated using nonperturbative methods
- Dependence on arbitrary separation scale μ controlled by RG equations

Main idea of effective field theory

- Why useful?
- Any sensitivity to high scales (including to physics beyond the Standard Model) can be treated using perturbative methods:

 $\mathsf{C}_{\mathsf{i}}(\mu) = \mathsf{C}_{\mathsf{i}}^{\mathsf{SM}}(\mathsf{M}_{\mathsf{W}},\mathsf{m}_{\mathsf{t}},\mu) + \mathsf{C}_{\mathsf{i}}^{\mathsf{NP}}(\mathsf{M}_{\mathsf{NP}},\mathsf{g}_{\mathsf{NP}},\mu)$

• Nonperturbative methods (operator product expansion, lattice gauge theory, ...) usually only work at low scales (typically μ -few GeV)

- While generation-changing couplings of W bosons to quarks exist, flavor-changing neutral currents such as
 - b→s γ , b→sZ⁰, b→s $\nu\nu$, b→sdd, bd→db, etc. (and others, also for light quarks)

do not exist as elementary vertices in the Standard Model (GIM mechanism)

 But such processes can be induced at loop level, e.g.:

 Effective interaction at low energies (E«M_W,M_Z,m_t):

b

• Detailed analysis (penguin autopsy) exhibits that GIM mechanism is "incomplete" in this case:

$$\sum_{q=u,c,t} V_{qb} V_{qs}^* f\left(\frac{m_q^2}{M_W^2}, \dots\right) = V_{tb} V_{ts}^* \left[f\left(\frac{m_t^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right] + V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

$$= V_{cb} V_{cs}^* \left[f\left(\frac{m_c^2}{M_W^2}, \dots\right) - f\left(\frac{m_u^2}{M_W^2}, \dots\right) \right]$$

 $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$

→ residual effect due to nontrivial mass dependence, often $\propto (m_t/M_W)^2$ or $ln(m_t/\mu)$

- Rich structure of couplings of Z⁰,g,γ lead to a plethora of effective local d=6 operators
- Consider, e.g., decays of type $b \rightarrow s+X$ (or $b \rightarrow d+X$, $s \rightarrow d+X$), where X is flavor neutral:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=u,c} V_{qb} V_{qs}^* \left(C_1 Q_1^{(q)} + C_2 Q_2^{(q)} \right) - V_{tb} V_{ts}^* \sum_{i=3,...,10,7\gamma,8g} C_i Q_i \right]$$

W-boson exchange penguin and box graphs

Current-current operators (W exchange):

$$Q_1^{(p)} = (\bar{s}_i p_i)_{V-A} (\bar{p}_j b_j)_{V-A}$$
$$Q_2^{(p)} = (\bar{s}_i p_j)_{V-A} (\bar{p}_j b_i)_{V-A}$$
$$(\bar{q}_1 q_2)_{V\pm A} \equiv \bar{q}_1 \gamma^{\mu} (1 \pm \gamma_5) q_2$$

• Results analogous to earlier discussion): $C_1(M_W) = 1 - \frac{11}{6} \frac{\alpha_s(M_W)}{4\pi}$ $C_2(M_W) = \frac{11}{2} \frac{\alpha_s(M_W)}{4\pi},$

 \leftarrow results quoted at $\mu = M_W$ for simplicity

• QCD penguin operators:

$$Q_3 = (\bar{s}_i b_i)_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_j q_j)_{V-A}$$

$$Q_4 = (\bar{s}_i b_j)_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_j q_i)_{V-A}$$

$$Q_5 = (\bar{s}_i b_i)_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_j q_j)_{V+A}$$

$$Q_{6} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_{j}q_{i})_{V+A}$$

$$C_{3}(M_{W}) = C_{5}(M_{W}) = -\frac{1}{6} \widetilde{E}_{0} \left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha_{s}(M_{W})}{4\pi}$$
$$C_{4}(M_{W}) = C_{6}(M_{W}) = \frac{1}{2} \widetilde{E}_{0} \left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha_{s}(M_{W})}{4\pi}$$

• Electroweak penguin operators:

• Results:

$$C_{7}(M_{W}) = f\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha(M_{W})}{6\pi}, \qquad C_{8}(M_{W}) = C_{10}(M_{W}) = 0$$
$$C_{9}(M_{W}) = \left[f\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) + \frac{1}{\sin^{2}\theta_{W}}g\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)\right] \frac{\alpha(M_{W})}{4\pi}$$

Loop functions:

$$f(x) = \frac{x}{2} + \frac{4}{3}\ln x - \frac{125}{36} + O(1/x)$$
$$g(x) = -\frac{x}{2} - \frac{3}{2}\ln x + O(1/x)$$

• Dipol operators:

$$Q_{7\gamma} = -\frac{em_b}{8\pi^2} \,\bar{s} \,\sigma_{\mu\nu} \left(1 + \gamma_5\right) F^{\mu\nu} \,b$$
$$Q_{8g} = -\frac{g_s m_b}{8\pi^2} \,\bar{s} \,\sigma_{\mu\nu} \left(1 + \gamma_5\right) G_a^{\mu\nu} t_a \,b$$

• Results $(x=m_t^2/M_W^2)$:

$$C_{7\gamma}(M_W) = -\frac{1}{3} + O(1/x)$$
$$C_{8g}(M_W) = -\frac{1}{8} + O(1/x)$$

Operator basis for $B \rightarrow K^*I^+I^-$ transitions

• In complete analogy to the case of four quarks, one finds that the relevant operators are:

$$\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + \text{h.c.}$$

with:

$$O_{7} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad O_{7}' = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{9}' = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad O_{10}' = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

Concepts of Effective Field Theory

Consider a QFT with a characteristic high-energy scale M

We are interested in performing experiments at energies $E \ll M$

<u>Step 1:</u> Choose a cutoff $\Lambda < M$ and divide all quantum fields into high- and low-frequency components ($\omega > \Lambda$ and $\omega < \Lambda$):

$$\phi = \phi_L + \phi_H$$

Recall:

 $\mathbf{1}$ M

Consider a QFT with a characteristic high-energy scale M

We are interested in performing experiments at energies $E \ll M$

<u>Step 1:</u> Choose a cutoff $\Lambda < M$ and divide all quantum fields into high- and low-frequency components ($\omega > \Lambda$ and $\omega < \Lambda$):

 $\phi = \phi_L + \phi_H$

Physics at low energies $E \ll \Lambda$ is entirely described in terms of the fields ϕ_L ; Green functions of these fields can be derived from the generating functional:

$$Z[J_L] = \int \mathcal{D}\phi_L \,\mathcal{D}\phi_H \, e^{iS(\phi_L,\phi_H) + i\int d^D x \, J_L(x) \,\phi_L(x)}$$

Derivation of the effective Lagrangian

<u>Step 2:</u> Since the high-frequency fields ϕ_H do not appear in the generating functional, we can **"integrate them out"** in the path integral:

$$Z[J_L] \equiv \int \mathcal{D}\phi_L \, e^{iS_\Lambda(\phi_L) + i\int d^D x \, J_L(x) \, \phi_L(x)}$$

where

$$e^{iS_{\Lambda}(\phi_L)} = \int \mathcal{D}\phi_H \, e^{iS(\phi_L,\phi_H)}$$

and $S_{\Lambda}(\phi_L)$ is called the **Wilsonian effective action**

Dependence on the cutoff Λ enters via the condition on the frequencies of the fields

Derivation of the effective Lagrangian

<u>Step 3:</u> Effective action is **non-local** on the scale $\Delta t \sim 1/\omega$, corresponding to the propagation of high-energy modes that have been removed from the Lagrangian

Since the remaining fields have energies $\omega < \Lambda$, the non-local effective action can be expanded in an **infinite series of local operators:**

$$S_{\Lambda}(\phi_L) = \int d^D x \, \mathcal{L}^{\text{eff}}_{\Lambda}(x)$$

where:

Does a Lagrangian consisting of an infinite number of interactions and hence an infinite number of (renormalized) coupling constants give any predictive power?

• Not if one adopts an old-fashioned view about renormalization and renormalizable QFTs, but not all is lost!

We can use **naive dimensional analysis** to estimate the size of individual terms in the infinite sum to any given matrix element

Adopt units where $\hbar = c = 1$, hence $[m] = [E] = [p] = [x^{-1}] = [t^{-1}]$ are all measured in the same units (mass units) Denote by $[g_i] = -\gamma_i$ the mass dimension of the coupling constants in the effective Lagrangian

Since by assumption the theory has only a single fundamental scale M, it follows that:

$$g_i = C_i M^{-\gamma_i}$$

where by **naturalness** we expect that $C_i = O(1)$

At low energy, it follows that the contribution of a given term $g_i Q_i$ to an observable scales like:

$$C_i \left(\frac{E}{M}\right)^{\gamma_i} = \begin{cases} O(1); & \text{if } \gamma_i = 0\\ \ll 1; & \text{if } \gamma_i > 0\\ \gg 1; & \text{if } \gamma_i < 0 \end{cases}$$

At low energy, it follows that the contribution of a given term $g_i Q_i$ to an observable scales like:

$$C_i \left(\frac{E}{M}\right)^{\gamma_i} = \begin{cases} O(1) \, ; & \text{if } \gamma_i = 0 \\ \ll 1 \, ; & \text{if } \gamma_i > 0 \\ \gg 1 \, ; & \text{if } \gamma_i < 0 \end{cases}$$

Therefore, operators with small γ_i are most important for $E \ll M$ and there is a finite number of such operators

This is what makes the effective Lagrangian useful !

Depending on the precision goal, one can truncate the infinite sum over interactions by only retaining operators whose γ_i values are smaller than a certain value

Since the Lagrangian has mass dimension D = 4, it follows that the operators have mass dimension:

$$\delta_i = [Q_i] = D + \gamma_i$$

Hence we can summarize:

Dimension	Importance for $E \to 0$	Terminology
$\delta_i < D, \gamma_i < 0$	grows	relevant operators
		(super-renormalizable)
$\delta_i = D, \ \gamma_i = 0$	$\operatorname{constant}$	marginal operators
		(renormalizable)
$\delta_i > D, \gamma_i > 0$	falls	irrelevant operators
		(non-renormalizable)

Only a **finite number** of relevant and marginal operators exist !

Comments:

Dimension	Importance for $E \to 0$	Terminology
$\delta_i < D, \gamma_i < 0$	grows	relevant operators
		(super-renormalizable)
$\delta_i = D, \ \gamma_i = 0$	constant	marginal operators
		(renormalizable)
$\delta_i > D, \gamma_i > 0$	falls	irrelevant operators
		(non-renormalizable)

- "relevant" operators are usually unimportant, since they are forbidden by some symmetry (else "hierarchy problem")
- "marginal" operators are all there is in renormalizable QFTs
- "irrelevant" operators are the most interesting ones, since they tell us something about the fundamental scale M

Comments

Examples of effective field theories:

High-energy theory	Fundamental scale	Low-energy theory
Standard Model	$M_W \sim 80 \mathrm{GeV}$	Fermi theory
GUT	$M_{\rm GUT} \sim 10^{16} {\rm GeV}$	Standard Model
String theory	$M_S \sim 10^{18} {\rm GeV}$	m QFT
11-dim. M theory		String theory
QCD	$m_b \sim 5 \ GeV$	HQET, NRQCD
	$M_{ChSM} \sim 1 \; GeV$	ChPT

- SM and GUTs are perturbative QFTs
- Fermi theory contains only irrelevant operators (4 fermions)
- String/M theory: fundamental theory is non-local and even spacetime breaks down at short distances

Comments

Examples of effective field theories:

High-energy theory	Fundamental scale	Low-energy theory
Standard Model	$M_W \sim 80 \mathrm{GeV}$	Fermi theory
GUT	$M_{\rm GUT} \sim 10^{16} {\rm GeV}$	Standard Model
String theory	$M_S \sim 10^{18} {\rm GeV}$	m QFT
11-dim. M theory		String theory
QCD	$m_b \sim 5 \; GeV$	HQET, NRQCD
	$M_{ChSM} \sim 1 \; GeV$	χΡΤ

- QCD at low energy: example with strong coupling, where the relevant degrees of freedom at low energy (hadrons) are different from the degrees of freedom of QCD
- Low-energy theory is strongly coupled, yet χ PT is useful