Status of B anomalies: Part ||
LOO—\eve\ b — sf/ transitions
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b — sV transitions

* The idea is that because these are loop suppressed, NP can
compete quite easily with the SM decay amplitude.

SM NP
b —» U > S b > : > a
t LQ :
¢ i o
V)% ) < S

* |f NP couples strongly and is light enough, it will significantly alter
the behaviour compared to the SM expectation.
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b — sV transitions

* pb—>s transitions have always played a prominent role in the
LHCb physics programme, e.g. from our Wikipedia page:

Physics goals [zdit)
The experiment has wide physics program covering many impertan: aspects of Heavy Flavor (Both beauty and charm), Electroweakx and QUD physics. Six key mcasurements have been
identificd involving E mesons. These are deserbed in a roadmap document € that form the ccre physies programme for the first high energy LHC running n 2070 2012, They include:

» Measuring the branching ratio of the rarz B, —+ p* p~ d=cay.

» Measuring the forward-backward asymmeiry of the muon pair in the favour changirg neutral current By = K p* p~ decay. Such & flavour changing nzutral current cannol cocur at free-

|=vel in the Standard Model of Parlicle Physics, and anly oczurs through box ard loop Feynman d agrams; propertiss of the decay can be strongly madified by n=sw Physics.

» Measuring lhe CP violaling prase in the cecay Bg = JAp ¢, caused by interference belween the deczys wilh and wilhoul By oscillal ons. This phasz is one o 1he CP observaoles wilh the
smalles! theorelical uncarlaintly n the Standard Model, and can be signilicantly modified by new Physics.

» Meaguring oropsrties of raciative B dacays, .e. B meson decays with photong In the final statss. Specifically, these are again flavour changing nsutral current decays.

» Trec-level determination of the unitarity triangic angie vy.

» Charm eas charged two-body B dzacays.

Fully reconstructed with charged final states is bread and butter
for LHCDb.

* Only areal challenge it they are extraordinary rare (e.g. Bs—
>Up).
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Example decays

 Example decays should result in low energy hadrons in order to
get good theory predictions.

i

° J/P(1S

cq 418

A
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bl - tg:i:ib'zt;;f from cC
O _I_ L :broe\;e :))pen charm
50 o J\ET
° BO — K*OILL_I_/L— 4 [m(p)]? —— ]

e Unlike CC decays, get spikes in the distribution, typically we veto
these so that we are dominated by the semileptonic decay.
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Branching fraction

* |s NP affecting the rate of these decays?

* Measure the branching fraction as a function of g2.
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e Take the most experimentally appealing signature (muons and
charged hadrons).
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Normalisation

At LHCb we normalise to the corresponding J/{ decay mode.

dB  N(B— KWyutp™) e(B—= JWK™) B(B— JWKW)B(J — ptu~)
d>  N(B— JWK®) (B— KOptp) (@Pax — Tmin)

* This vastly simplities systematic uncertainties, as both signal and
normalisation have the same final state.

* But: we are limited by the uncertainty on B(B — J /K ™)

* Good information for B+ and B0 mesons from B-factories, for B0
and A\w0® branching fractions we have to do a bit more work.
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FNAL/MILC, Phys. Rev. D 93, 034005 (2016)

Branching fraction results
BY — K*O/ﬁ,u

JHEP 02 (2016 ) 104
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Ap — A%t~

q* [GeV?/ c4]

1.4

1.2

1.0

0.8 |

0.6

0.4

dg?

0.0

0.2FS T

(1077 GeV ™

Patrick Owen

Form factors + CKM —+ Others mmx T o e B B s e B e
Form factors only S E LHCb 3
LHCb14 (Bt) —=— S 8E =
LHCb14 (BO ’ 8 7 = SM pred. _E
Babarl2 ——— oS - =Data 3
. CDF11 —=— | S 6F E
il Belle09 —— = sk + 3
514 : T S 4F +—}—
+ - S 3 3F 3
iy CENS e Ny
> = o [ & ? 2:_ =
b -
T - =
Ho  v@8) = - |
5 10 5 20 0 2% 2 5 10 s
qZ(GeV)Q q [GGV /c ]

* Everything is below the SM, with the
notable exception of A} — A%u™ ™

Mode Fraction (T; /T)

[ Jy(1)AXB(b =A%) (58+08)x 10
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The robustness of muons

* Fit the mass peak to obtain the signal yield and correct using the ratio

N
-
-

Candidates / ( 10 MeV/c?)

of efficiencies.
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 The backgrounds and efficiency corrections for muonic modes is
very robust.
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Beyond branching fractions

* |f NP is indeed changing the branching fractions of these decays,
expect it also to change the angular distribution.

Boost into the rest frame of the B,
and measure these angles for every
signal candidate.

 The maindecayisB — K*utu~, whynot B — Kutpu~or BY — ¢utp™
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First we write down the PDF

* The B’ — K*¢T¢~ angular distribution can be written down as follows

AT +T)/d¢? dq2dQ 32
_l_

1 d4(T +T 9
C+1) [(1—FL)SHI29K—|—FLCOSQQK

o

(1 — F1,) sin® 0 cos 26,

N

— F}, cos? O cos 20, + S5 sin® O sin® 6; cos 2¢
+.5, sin 20 sin 260, cos ¢ + S5 sin 20 sin 0, cos ¢
—|—§AFB sin® Oy cos B, + Sy sin 20 sin 6, sin ¢

+Sg sin 20 sin 26, sin ¢ + Sy sin® O sin® 6, sin 2q§}

Probe observables such as the forward- i 5 LU
backward asymmetry (Arg) and and the fraction B
of longtitundal polarisation of the K* (Fr) u K*
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Need to correct for angular acceptance

* The requirements that the decay is reconstruction will bias the
angular distribution.

Relative efficiency

O
in

-1/ LHCb
! simulation

-0.5 0 0.5 1

* This is corrected using simulation.
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Then we fit the distribution

* Fit the 4D distribution of mass, three angles in bins of g2.

* We avoid fitting in g2 to preserve independence on theory.
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A tricky statistical iIssue

 The angular PDF is only positive in certain regions of phase-
space.

1 d?T B
[dcos6;dg?

Fi,(1 — cos® 6;) + 0.9

OO W | W

(1 —FL)(1 +(3082 91) + App cos 6, 0.7

e Positive if: 0.2

q1 0.8-06-04-020 020406 08 1

3
Arg < Z(l — Fp) A

FB
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This 1s not normally an issue

* Background can sometimes save you from these issues.

|o®:®: L 4 L 4 L 4

* Heres an example of the % 3~ (b) LHCb ]
data preferring a negative = | |
signal PDF, but the total =
PDF staying positive. g am| 9 .

%
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st

* [For the angular analysis, however, its often impossible to keep the total
PDF positive, which causes the uncertainties to be badly behaved.
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Coverage issues

* Frequentist coverage is defined as the probability that the true value
U is contained within a confidence interval, you want this to be 68%.

e |fits above 68%, you are said to overcover, you are too
conservative.

e |fits below, you are too aggressive (not a good situation to be in).

1——r—

o.9§— _
* Instead of relying on the likelihood  osf :
to give you the uncertainty, throw g;: :

toys to tell you how oftenyou geta b . 3% ol . E
DLL worse than one at the pointin  o4f

the data. 038, _
0.2F E
0.1 r =
0= L ! 1 P i
0 0.6 0.8 1
F
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Results

 Once that's sorted, add the systematics (small) and compare to theory.
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« Small shift in Arg but overall things are consistent with the SM, apart
from one observable ...
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Ps
e (Cancel leading form factor uncertainties by constructing ‘optimised
observables’ (P observables).

(\lb 250 . . ] - N 1.? I I I ]
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e Discrepancy just below the J/ peak.

Patrick Owen 17 Particle flavour fever school



Coherent pattern”

* |fthe Ps discrepancy is due to NP, it would also cause the
branching fractions to be lower than the SM.

| ! | 1
E |
— ] o Wl
. . . E : Z i ST
llll5llll10llll15lll _1- .’_IT_:...I.-- ..-
5

. A
¢* [GeV?*/c*] 0 10 15
g [GeV?/c4]

e Something appears to be negatively interfering with the SM b->sl
decay amplitude, with a vector like coupling to the leptons.
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A SM complication

* Unfortunately, there is also a SM contribution which can negatively
interfere with the semileptonic amplitude.

l \/[ —
Q:v

lw
T/, 2
C =
V) 7\ C
[\ O [ ) u
B K -5 : '
\_ / \/ Blake et al, Eur. Phys. J. C (2018) 78: 453

* This contribution is very difficult to calculate as it is fully hadronic.
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Handles with data

* We have tried experimentally to control this in B — Ku™* p~ decays.

@300 [T T T [ T T T T ]

o £ LHCb .
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* No big effect from charmonium resonances seen, but model assumes
a Breit-Wigner and only has a finite number of resonances included.
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|_epton universality

e |f we still can’t come to a consensus, we can compare muons and
electrons to see if the same discrepancies appear there.

* First test the BF disprenacies by measuring R ratios.

d d
- . 4
" RK():B(B%K()MM)
BO /,/’ \\\\ K *0 B(B — K(*)6+€_)
b - 'I -t o -— - 3
y 70 * Muon and electron masses small
ule: compared to b-quark: Rkey ~ 1
pHe+

« Again normalise to simplify systematics (also B(B — J/¢yK™*))cancels).

B(B°— K*u*pu™) B(B’— K*ete™)
B(B?— KX Jfih (= H+M))/B(BO—> K*0Jfp(— eten))

RK*O —
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The problem with electrons

* The main issue with electrons is their tendency to bremsstrahlung

ECAL

* Also get more FSR from electrons, but this is
& .
E, generally a smaller effect and is reproduced
Upstream Downstream fairly well in our simulation (< 1% effect).

brem

Magnet

Ey W ° Easier to confuse signal and background,
Air £ due to a widening of the mass resolution.

* |n addition, trigger and reconstruction efficiency worse for electrons
* Electrons are more easily swept away by the magnet.
« High ET ECAL cluster less distinguishing than a high PT muon.

* Rule of thumb: lose a factor three in signal when exchanging a muon with
an electron.
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Bremsstranlung issues

Get background from the J/p and Pp(2S) leaking into signal region.

JHEP 08 (2017) 055
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Bremsstranlung issues

HCAL

o Easier to confuse signal with ‘partially reconstructed’
background.
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Measurement at LHCDb

LHCb-PAPER-2017-013, arXiv:1705.05802
* Results use run 1 data - 3fb-1 of luminosity.

 Fit B mass in low and central g2 regions:

low’ region ‘central’ region
0.045 < ¢* < 1.1GeV*/c* 1.1 < ¢° < 6.0GeV*/c*

25 LHCb 33 LHCb
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Correcting for efficiency

e Split data depending on how event was
triggered.

* |Important for cross-checks.

* The double ratio means that only efficiency differences due to
kKinematics can affect the result.

* Simulation is also corrected for using control samples.

* |f these corrections are not used, the result only changes
by 5%.
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Results

e Take ratio of signal yields and correct for efficiency to get Ry ).

LHCDb Preliminary ‘ low-g? ’ central-g?
0.090
R0 0660 T Q810 +£0.024 | 0.685 * J582 +0.047 Ry = 0.7457 074 (stat) £ 0.036 (syst)
LHCb PAPER-2017-013
12 [T T T T | L L L ] +LHCb —B—BaBar +BE”E
o s i Q:h:‘. P L B A S — T
< ek oo oo N -
o 10 S e : - LHCb ]
0.8 E - Lo i =
= | }: B
0.6 } - E
! ® LIChH ] i I SM
041 B SM from CDHMV ] i T )
A SM from EOS i 0.5F LHCb: Phys. Rev. Lett. 113, 151601 (2014)
0.2 L LHCD Preliminar v SM from flav.io ] [ BaBar: Phys. Rev. D 86,032012 (2012) -
y ¢ SM from JC ) i Belle: Phys. Rev. Lett. 103,171801 (2009)
OO P R N M N TN TN NN M NN M PR N N N T N TN TN NN N NN N N N 0 PR T TR T I TR TR R }/ PR TR TR TR R TR T T T
0 1 2 3 4 5) §) 0 5 10 15 20
¢ [GeV? /¢ 7> [GeV¥/ ']

 LHCDb results are 2.6 (Rk), 2.4 and 2.20 from the SM predictions and
all in the same direction.
* Error dominated by the statistical uncertainty.
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What should we worry about”?

e The master formula;

N(Kete ) La

Ry — N(KJ/Y)ee GMN
L N(Kptp—) erel
N(KJ/Y)up

Patrick Owen 28 Particle flavour fever schoo



What should we worry about”?

e The master formula;

N(Kete ) L

R,y — N(KJ/Y)ee GHN
K N(Kptp—) erel
N(KJ/P)pp

* My opinion:

Easier Harder

N(KJ/), — N(KJ/$)ee — N(KpTp™) — ef;j — N(Kete™) = ¢
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C rO S S — C h e C KS LHCb-PAPER-2017-013

 Most powerful cross-check for efficiency, measure single ratio
for the J/ modes.

_ B(B°—= K*J/p (= ptum))
YT B(BYS KOJRy (— eter))

1.043 4+ 0.006 (stat) £ 0.045 (syst)

Other cross-checks include other double ratios who's precision is known.

R = B KIS0 ) BB KU e )
¥(29) = TB(BY S K0 kb (= ) B(B'— K0 Jh) (— ete))

B(B’— K*vy(— eTe™))
B(B°— K*Jh)(— eTe))

Ty =

Both of which are found to be compatible with expectations.
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Cross-checks (|

 Compare bremsstrahlung/trigger categories between data and
simulation.

= 60 T T T T T T . = 80 I I I I T I -
& : LHCD Preliminary 7 & LHCb Prefiminary -
e - —_ -
2 50 C B 5’ - K 0yee) Data) ] A 70 Bl 5K Daa) A
N = ; ) . N -
g N B’ - K Iy (ee) (Slmulatlon): g - B’ > K*O'y (Simulation[]
o 40 — 5 not possible to 7
qa - - qa 50 assign S
- . biguously J
o - ] o unambig y 3
S 30F 1 © 40 one photon to a =
= i 5 30 track due to _7
= 20 N S very small 1
- [ K 20 opening angle —
10 N between -
. 10 electrons
0 | | | | | | I 0 | | :

IOE L[OH LOoI LOE LOH LOI LOE LOH LOI IOE LOH LOI LOE LOH LOoI LOE LOH LOI

Oy ly 2y Oy ly 2y
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Fraction of candidates [%]

Fraction of candidates [%]

Cross-checks (|

e Also compare kinematic distributions of signal peak between data/

simulation.
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Cross-checks (V)

 What about the signal yield?

L 60f LHCb
S o Signal
25 Combinatorial 5 0 L
B—X(—=YK ")ete
B =K J/p(—e*e) 40F

1.1<¢*<6.0 [GeV?/c*]

Candidates per 34 MeV/c?

‘L

Candidates per 35 MeV/c?

...... 3 11k
i - 1 gt
z; 0 :}‘++++++++++#+ ++ +++++++ ++++'+‘+++ """""""""" —E 10 ) +++ ++++
—5:— +. * . . = O ] ] | |+ | | ] ] |+ﬁ+“*+| ‘|“i +|
4500 5000 5,751?13+n—e+e—) [gggg o 1000 1500 2000 2500
JHEP 10 (2014) 064 m(K z+r") [MeV/c?]

« Part. reco background controlled in two ways:
* Using B— K*"(J/¢Y—eTe)
» UsingB — Krru™p™
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Cross-checks (V)

What about modelling of signal yield?

8000 .
LHCDb Preliminary
7000 :
----- Signal
6000 Combinatorial
5000 Bl A, —pKJ/ v
4000 B B, —K )y

Candidates per 34 MeV/c?

3000
2000
1000
5 -
= Tt o et
= oF-4tt Tt P 2 TOL J5 LA  ASRE 7 AN U 3
S T 7T H
5K . . . —]
4500 5000 5500 6000

m(K mee) [MeV/c?]
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atrick Owen

Residual worries?

N(KeTe ) ,q

R, — N(KJ/Y)ee GMN
K= N(Kptp—) erel
N(KJ/{)u, °©°
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Summary and outlook

 We are three separate hints for NP in b—>sll decays, which ditferent
experimental and theoretical uncertainties.

* Nothing is conclusive, but the fact that they are all consistent is
encouraging.

 LHCDb is looking forward to updating the R results with run II.

e Also want to measure Ps for electrons. & ' 7 T mavisemonmy :

SM from DHMV

® LHCb Run 1 analysis ]
05k 0 Belle ee” arXiv:1612.05014 ]|
s 0 Belle u*u arXiv:1612.05014 |

* Also might expect to see discrepancies in
the Bs9—>pp branching fraction

o _

osf -
eventually. | R "
I N I TR

g* [GeV?/c]
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Back-ups
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Remarks on the first bin

e |f we assume NP is heavy, its hard to accommodate the shitt
in the first g2 bin.

1.2 e . d . d
v N ] -
S 1.0 :_I** ...................................... W _: ’V[-/‘\
0.8 :— _: B /// \\\ K0
A 1 . / \
0.6 F I - / u,c,t \
B ® LHCh i b <+——= - - 3
0.4 B SM from CDHMV
i SM from EOS ] v, Z°
0.2+ o ¥V SM from flav.io 7]
E LHCb Preliminary & SM from JC E u e
T
¢ [GeV?/c] ptje+
 Atlow g2, the decay amplitude is dominated by the photon
diagram - must be lepton universal!
o

There are models which get around this with light mediators (see
e.g. Sala, Straub, arXiv:1704.06188).
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