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(=== Multiscale Materials Modelling (MMM)

Current focus areas of the MMM group

* Modelling of strongly correlated materials especially actinide materials based on
Density Functional Theory augmented with a Hubbard U term (DFT+U)

* |rradiation damage in nuclear fuel materials and reactor pressure vessel (RPV)
steels using force fields and kinetic Monte Carlo (kMC) methods

* Mechanical behaviour of fluorite-type oxide materials using DFT+U and force fields

* XAFS spectra based on ab initio molecular dynamics (AIMD) simulations using the
MD-EXAFS approach

* Chemical processes including rare events using accelerated molecular dynamics
(AMD) methods especially metadynamics

* Nuclear fuel behaviour with fuel performance codes
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(=== Multiscale Materials Modelling Group

* Monica Kosa (COFUND Postdoc)
Molecular dynamics simulations using electronic structure (DFT)
and force field methods, mechanical properties, dislocations

e Matthias Krack (Group leader)
Molecular dynamics simulations using electronic structure (DFT)
and force field methods, CP2K code development, XAFS spectra
simulation, metadynamics, fuel behaviour modelling, HPC

e Raoul A. Ngayam-Happy (Scientist)
Multiscale simulation of materials aging and degradation (RPV
steels and nuclear fuels), kinetic Monte Carlo (aKMC/oKMC),
molecular dynamics simulations using force fields and DFT
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(=== Multiscale Materials Modelling Group

e Sergii Nichenko (Scientist)
Molecular dynamics simulations using force field methods, MD
code development, thermodynamic modelling using GEMS

e Sriram Venkatesan (PhD student)
Multiscale simulation of materials aging and degradation (RPV
steels), kinetic Monte Carlo (kMC) and MD simulations
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= Software Projects

e CP2K: The MMM group contributes to the
— Development of the open-source CP2K program package
— Generation and maintenance of the Goedecker-Teter-Hutter (GTH)
pseudopotential database
— Code quality assurance by running several CP2K regression testers on the PSI
compute cluster Merlin5
— Release process of CP2K

* LAKIMOCA: Lattice kinetic Monte Carlo
— oKMC/aKMC code, especially for reactor pressure vessel (RPV) steel modelling

— Collaboration with eDF and KTH Stockholm
— Development of new models

e PERFORMG60 platform
 GEMS: Gibbs Energy Minimization Software for Geochemical Modelling

 ASTRAM: Post-processing tool for defect analysis
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= H2020 Projects

* INSPYRE: Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors

» SOTERIA: Safe long-term operation of light water reactors based on improved
understanding of radiation effects

 SAMOFAR: Safety Assessment of the Molten Salt Fast Reactor
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(15 Multiscale Modelling Scope
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(= Electronic structure versus force field methods

Electronic structure methods Force field methods

Motion of nuclei and electrons Motion of atoms

pre-defined fitted interaction
potentials
(empirical potentials)

No a priori knowledge of the
interatomic interactions

Dynamic (re)bonding processes Bonding (topology) pre-defined

Predictive Only limited predictive
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(15 Electronic structure

e Schrodinger equation:

HWY)=E|V)

e Wavefunction of a system of N nuclei and n electrons:
Y- ‘P(Tl, rz, Y Rl' Rz, e ) RN)

* Born-Oppenheimer approximation (= BO-MD)
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[==5» Kohn-Sham Density Functional Theory (DFT)

* The positive definite electron density of a system is given by

p(r) = njl‘{’(r”)l2 dr, ...dr, = njl‘P(r, Ty, .., Ty)|? dry ...dr,

= reduction of the problem complexity from 3n to 3 degrees of freedom

* |t provides the key connections

n electron wavefunction Y(rm")
II Hohenberg-Kohn (HK)
one-electron density p(r)
) Kohn-Sham (KS)

n one-electron spin orbitals Z|¢i(r)|2
i
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BS Major tool: CP2K program package

Program package to perform primarily
— Structure optimisations
— Molecular dynamics (MD) simulations

— Property calculations

Developed in the framework of the open source project CP2K

Fully modular implementation in Fortran 2003 (about 1 Mio code lines)

Layered module structure with shared basic modules

Common flexible input structure

http://www.cp2k.org



http://www.cp2k.org/
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(= CP2K is not CPMD

Please note that there is currently
* No plane waves code implemented in CP2K
* No Car-Parrinello scheme implemented in CP2K

(only Born-Oppenheimer molecular dynamics - BOMD)
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(= Modules

CP2K
!
I I
Single run Farming run
I ! I I

Metadynamics Nudged Elastic Band Cell optimization  Properties

LI II III

Molecular Dynamics Monte-Carlo Structure optimization
Ab-initio Tight-binding Semi-empirical Empirical FF
(KS-DFT) (TB-DFT) (AM1, PM6) (FIST)

I I I I I

On-the-fly property calculation
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BS Computational methods: Energy and forces

CP2K
1 ‘ I
Single run Farming run
: L ! :
I I I I

Metadynamics Nudged Elastic Band Cell optimization  Properties

LI II III

Molecular Dynamics Monte-Carlo Structure optimization

On-the-fly property calculation
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RS QUICKSTEP module

Electronic structure method based on Kohn-Sham DFT

Implementation of Gaussian Plane Waves (GPW) basis sets:

— Linear combination of Gaussian-type orbitals (LC-GTOs) for the Kohn-Sham
orbitals

— Auxiliary plane waves basis set for the expansion of the electronic charge
density

Gaussian Augmented Plane Waves (GAPW) method allows for all-electron
calculations

Due to the hybrid basis set approach:
— Kohn-Sham matrix construction scales quasi linearly with system size

— Large and accurate Gaussian basis sets can be employed



PAUL SCHERRER INSTITUT

(15 Merit of a hybrid basis set

Multiple representations of the electronic charge density are concurrently
available:

— P: density matrix (atom-centred Gaussian-type orbital basis set)
— p(1): real-space density (auxiliary plane wave basis set)

— p(g): g-space density (auxiliary plane wave basis set)

Efficient solution of the Coulomb problem is enabled:

collocate p(g) integrate
P—>p(r)—>p(g) - Vy(g) = ’VH(T)—>VH

o(n lbg n)

Hartree potential build scales (quasi) linearly

Attempts to combine the best of two worlds
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(15 XAFS spectra simulation
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5 Force field vs Experiment for pristine UO,
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[({=J» Computational study of dislocations in UO,

y-surface or the Generalised Stacking Fault Energy Surface
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1)

2)

V. Vitek, Philos. Mag. 40, 903 (1968)

V. Vitek, Prog. Mater. Sci. 36, 1 (1992)

Choose a surface gliding plane, e.g. {001} according to
experimentally known glide planes

Displace part of the crystal while keeping the other
steady
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[({=J» Computational study of dislocations in UO,

y-surface or the Generalised Stacking Fault Energy Surface
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3) Compute the energy difference between the
unperturbed crystal and the perturbed crystal

4) Repeat 2) and 3) to sample the chosen {001} plane
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V. Vitek, Philos. Mag. 40, 903 (1968) y-surface (Energy in J/m? as function of the displacement)

V. Vitek, Prog. Mater. Sci. 36, 1 (1992)
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({={J» y-surface modelling of UO,

{100} {110} {111}

Recent literature shows qualitative and
guantitative differences among different
empirical potentials:

Basak03

0.25

EappeEs Morelon03
5_
Goel08
Morelon03
I'IJ.IE
Readl0
Yakub10

R. Skelton, A.M. Walker, J. Nucl. Mater. 495, 202 (2017)
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RS Modelling the slip systems on three planes

Validation of the theoretical procedure
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R. Skelton, A.M. Walker, J. Nucl. Mater. 495, 202 (2017) M. Kosa, M. Krack, preliminary results (Morelon EP, Energies in J/m?)
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5 Validating Empirical Potentials with DFT+U

{001} glide plane:

DFT+U Yakub10 Morelon03
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(3x3x8 cell, 864 atoms)

e DFT+U results in a surface with shape similar to Yakub10 EP and a more
corrugated y-surface

e Electrons have the freedom to rearrange around the displaced ions
Will be demonstrated for the {110} surface

M. Kosa, M. Krack (preliminary results, DFT+U (U = 2 eV), Energies in J/m?, {001}, FOP: -3,-1,+1,+3)
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5 Validating Empirical Potentials with DFT+U

{110} glide plane:

DFT+U Yakub10
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e The DFT+U {110} y-surface is qualitatively different from any of the
considered EP

 Local minimum at the top of the cap, a metastable state

M. Kosa, M. Krack (preliminary results, DFT+U (U = 2 eV), Energies in J/m?, {001}, FOP: -3,-1,+1,+3)
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(== Electronic effects during {110} sampling
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M. Kosa, M. Krack (preliminary results, DFT+U (U = 2 eV), Energies in J/m?, {110}, FOP: -2,0,-2,0)
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RS Microstructural evolution in Ferritic steels

* Framework: H2020 EU-project SOTERIA
e PhD in collaboration with KTH Sweden (P. Olsson): Started in Feb 2018

Our contribution: Modelling carbides and their effects on radiation-induced microstructure changes
— Carbon sits on a different lattice than Fe

- Multi-lattice model

— Carbon has specific interactions with solute atoms and point defects

(a) Carbon (i Nirogen - _{c) Ouygen
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- Development of an interaction and migration model

Binding energy (6V)

(=]
o
Ny
&
\ 4
Energy barrier (V)

=]
T

0.5k
L T L

1 2 3 41 2 3
Number of solutes, m

P
T2 3 4 0.

, ,
VT UX U

* DFT-based Kinetic Monte Carlo method: LAKIMOCA code (developed at EDF R&D, France)
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RS Microstructural evolution in Ferritic steels

* Treatment of multi-component Fe alloys on a 3D rigid lattice with PBC or absorbing

surfaces: —

— Elements on substitutional sites: Cu, Mn, Ni, Si, P “h | & -
' i

— Self-interstitial atoms (SIA): Fe, Cu, Mn, Ni, Si, P ‘ o, L,

e Diffusion by 15t nearest neighbour (1nn) jump:
— Via vacancy
— Via self-interstitial
— Jump probability

+ Carbon

* Residence time algorithm applied to all events
— Point defect jumps

— Point defect fluxes
1

— Average time step: At =
Yk Tjk

Eq = Egy(X) +~——
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RS Outlook on Future Activities and Projects

Modelling of Silicon anodes for high energy density Li-ion batteries
— Partners: PSI/LEC, EMPA, BIU (Sinergia)

— Mechanical behaviour of organic coating materials

— Modelling of the Li-ion diffusion and lithiation process

— Reactivity of the solid electrolyte interface (SEI)

Crystal structure prediction
— Partner: Novartis

— Relative phase stability
— Co-crystal formation

— Salt stability

Development of ab initio based Monte Carlo models for predicting thermodynamic and
transport properties of fluorite-type functional oxides
— Partner: Uni Zurich (SNSF)

Follow-up to SAMOFAR
— Viscosity of the salt melt derived from MD simulations
— Thermo-dynamical modelling (GEMS)
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= Wir schaffen Wissen — heute fir morgen

My thanks go to

D. Bocharov (Uni Riga)
A. Kuzmin (Uni Riga) |
S. Groh (Uni Basel)

M. Kosa
R. Ngayam Happy

CP2K developer team

CSCS

EC (H2020)

PSI COFUND
Swissuniversities
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