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WHY THE EXCITEMENT?
GPUs as Enablers of Breakthrough Results

Paper: H.Zhang et al. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, arXiv:1612.03242

We can generate photorealistic images 
from textual descriptions and super-

enhance blurry photos!

Achieve super-human 
accuracy in classification

And we are getting 
faster fast
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GPU Computing Artificial IntelligenceComputer Graphics

NVIDIA - AI COMPUTING COMPANY
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TESLA PLATFORM
Leading Data Center Platform for Accelerating HPC and AI

TESLA GPU & SYSTEMS

NVIDIA SDK

INDUSTRY FRAMEWORKS 
& TOOLS

APPLICATIONS

ECOSYSTEM TOOLS

HPC

+450 
Applications

FRAMEWORKS

INTERNET SERVICES

DEEP LEARNING SDK COMPUTEWORKS

SYSTEM OEM CLOUDTESLA GPU NVIDIA DGX-1 NVIDIA HGX-1

ENTERPRISE APPLICATIONS

Manufacturing

Automotive

Healthcare Finance

Retail

Defense

…

cuBLAS
DeepStream SDK

NCCL 

cuSPARSE
cuDNN TensorRT
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AGENDA

Latest Generation GPU

Quick intro to Neural Networks and Inference

HPC + DL
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LATEST GENERATION GPUS
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HOW GPU ACCELERATION WORKS
Application Code

+

GPU CPU

Compute-Intensive Functions

Rest of Sequential
CPU Code
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HETEROGENEOUS ARCHITECTURES

GPU 0 

MEM

CPU

SYS MEM

GPU 0

GPU 1 

MEM

GPU 1

GPU 2 

MEM

GPU 2



10

LOW LATENCY OF HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other threads (warps)

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1

W2

W3

W4

T1 T2 T3 T4
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GPU ARCHITECTURE

GPU L2

GPU DRAM

SM-0 SM-1 SM-N

PCI-E or NVLINK
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GPU SM ARCHITECTURE
Kepler SM

SM
SM

SM
SM

Register

File

L1 Cache

Constant

Cache

Functional 

Units

(CUDA cores)

Shared 

Memory

GK110

FP32 Cores 192

FP64 Cores 64

Register File 256 KB

Shared 

Memory
16/32/48 KB

Texture

Cache

15 SMs on Tesla K40
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GPU SM ARCHITECTURE
Pascal SM

SM
SM

SM
SM

Register

File

Unified 

Cache

Functional 

Units

(CUDA cores)

Shared 

Memory

GP100

FP32 Cores 64

FP64 Cores 32

Register File 256 KB

Shared 

Memory
64 KB

Constant

Cache

56 SMs on Tesla P100
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GPU SM ARCHITECTURE
Volta SM

SM
SM

SM
SM

Register

File

Functional 

Units

(CUDA cores)

GV100

FP32 Cores 64

FP64 Cores 32

Tensor Cores 8

Register File 256 KB

Shared 

Memory
up to 96 KB

Constant

Cache

80 SMs on Tesla V100

L1 Cache

Shared 

Memory
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TESLA FAMILY
GPU comparison (boost clocks)

Tesla K40 Tesla P100 Tesla V100

Peak FP32 (TFLOP/s) 5.04 10.6 15

Peak FP64 (TFLOP/s) 1.68 5.3 7.5

Peak Tensor Core 

(TFLOP/s)
N/A N/A 120

Memory Size (GB) 12 16 16

Memory Bandwidth 

(GB/s)
288 732 900
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• 21B transistors
815 mm2, 12nm FFN

• 80 SM
5120 CUDA Cores
640 Tensor Cores

• 7.8 FP64 TFLOPS 

• 15.6 FP32 TFLOPS

• 125 Tensor TFLOPS

• 16 GB HBM2
900 GB/s memory bandwidth

• 300 GB/s NVLink bandwidth

NVIDIA TESLA V100

*full GV100 chip contains 84 SMs
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TENSOR CORE
Mixed Precision Matrix Math - 4x4 matrices

New CUDA TensorOp instructions 
& data formats 

4x4 matrix processing array 

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Using Tensor cores via

• Volta optimized frameworks and 
libraries (cuDNN, CuBLAS, TensorRT, ..)

• CUDA C++ Warp Level Matrix Operations
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cuBLAS Single Precision (FP32)

P100 (CUDA 8)

V100 (CUDA 9)

cuBLAS GEMMS FOR DEEP LEARNING
V100 Tensor Cores + CUDA 9: over 9x Faster Matrix-Matrix Multiply

9.3x1.8x

Note: pre-production Tesla V100 and pre-release CUDA 9. CUDA 8 GA release.
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AI PERFORMANCE ON VOLTA
3X Faster DL Training Performance

Over 80x DL Training 
Performance in 3 Years

1x K80
cuDNN2

4x M40
cuDNN3

8x P100
cuDNN6

8x V100
cuDNN7

0x

20x

40x

60x

80x

100x

Q1

15
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15

Q2

17
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Googlenet Training Performance
(Speedup Vs K80)
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85% Scale-Out Efficiency
Scales to 64 GPUs with Microsoft 

Cognitive Toolkit

0 5 10 15

64X V100

8X V100

8X P100

Multi-Node Training with NCCL2.0
(ResNet-50)

ResNet50 Training for 90 Epochs with 1.28M images dataset | Cognitive 
Toolkit with NCCL 2.0 | V100 performance measured on pre-production 

hardware. 

1 Hour

7.4 Hours

18 Hours

3X Reduction in Time to Train 
Over P100

0 10 20

1X
V100

1X
P100

2X
CPU

LSTM Training
(Neural Machine Translation)

Neural Machine Translation Training for 13 Epochs |German ->English, 
WMT15 subset | CPU = 2x Xeon E5 2699 V4 | V100 performance 

measured on pre-production hardware. 

15 Days

18 Hours

6 Hours
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NVIDIA cuDNN 7
Deep Learning Primitives

developer.nvidia.com/cudnn

High performance building blocks for deep learning 
frameworks

Drop-in acceleration for widely used deep learning 
frameworks such as Caffe2, Microsoft Cognitive Toolkit, 
PyTorch, Tensorflow, Theano and others

Accelerates industry vetted deep learning algorithms, such 
as convolutions, LSTM RNNs, fully connected, and pooling 
layers

Fast deep learning training performance tuned for NVIDIA 
GPUs

“ NVIDIA has improved the speed of cuDNN

with each release while extending the 

interface to more operations and devices 

at the same time.”

— Evan Shelhamer, Lead Caffe Developer, UC Berkeley
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cuDNN 7

NCCL 2

cuDNN 6

NCCL 1.6

cuDNN 4

cuDNN 2

Deep Learning Training Performance
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UNIFIED MEMORY
Large datasets, simple programming, High Performance

Allocate Beyond 
GPU Memory Size

Enable Large 

Data Models

Oversubscribe GPU memory

Allocate up to system memory size

Tune 

Unified Memory

Performance 

Usage hints via cudaMemAdvise API

Explicit prefetching API

Simpler 

Data Access

CPU/GPU Data coherence

Unified memory atomic operations

Unified Memory

GPU CPU

CUDA 8 and beyond
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VOLTA NVLINK

• 6 NVLINKS @ 50 GB/s 
bidirectional 

• Reduce number of lanes for 
lightly loaded link (Power 
savings)

• Coherence features for NVLINK 
enabled CPUs

POWER9 based node

Hybrid cube mesh 
(eg. DGX1V)



23

NVIDIA DGX-1
AI supercomputer-appliance-in-a-box

8x Tesla V100 connected via NVLINK

(120 TFLOPS FP32, 960 Tensor TFLOPS) 

Dual Xeon CPU, 512 GB Memory

7 TB SSD Deep Learning Cache

Dual 10GbE, Quad IB 100Gb

3RU – 3200W

Optimized Deep Learning Software 

across the entire stack

Containerized frameworks

Always up-to-date via the cloud
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NVLINK AND MULTI-GPU SCALING

PCIe 

Switch

CPU

PCIe 

Switch

CPU

0

32

1 5

67

4

• Data loading over PCIe (red)
• Gradient averaging over NVLink (blue)
• No sharing of communication resources: 

No congestion

PCIe 

Switch

CPU

PCIe 

Switch

CPU

0

32

1 5

67

4

QPI Link

• Data loading over PCIe
• Gradient averaging over PCIe and QPI
• Data loading and gradient averaging share 

communication resources: Congestion

PCIe based system NVLINK based system

For Data Parallel Training
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NVIDIA Collective Communications Library (NCCL) 2
Multi-GPU and multi-node collective communication primitives

developer.nvidia.com/nccl

High-performance multi-GPU and multi-node collective 
communication primitives optimized for NVIDIA GPUs

Fast routines for multi-GPU multi-node acceleration that 
maximizes inter-GPU bandwidth utilization

Easy to integrate and MPI compatible. Uses automatic 
topology detection to scale HPC and deep learning 
applications over PCIe and NVink

Accelerates leading deep learning frameworks such as 
Caffe2, Microsoft Cognitive Toolkit, MXNet, PyTorch and 
more

Multi-Node:

InfiniBand verbs 

IP Sockets

Multi-GPU:

NVLink

PCIe

Automatic 

Topology 

Detection
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WHAT’S NEW IN NCCL 2

Performance
• Delivers over 90% multi-node scaling efficiency 

using up to eight GPU-accelerated servers

New Features
• Multi-node, multi-GPU communication collectives

• Automatic topology detection to determine 

optimal communication path

• Optimized to achieve high bandwidth over PCIe

and NVink high-speed interconnect

Available now as a free download to members of 

NVIDIA Developer Program

developer.nvidia.com/nccl
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Near-Linear Multi-Node Scaling

Microsoft Cognitive Toolkit multi-node scaling performance (images/sec), NVIDIA DGX-1 + cuDNN 6 

(FP32), ResNet50, Batch size: 64
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QUICK INTRO TO NEURAL 
NETWORKS
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1-SLIDE INTRO TO CONVOLUTIONAL NEURAL NETS
Forward/Backward Propagation

Input

Convolution

Activation

Fully-
connected

Loss-Function
(Cross Entropy)

Backward-propagation
(gradient computation)

𝛻
𝛻 𝛻

𝛻

SGD

Optimization
Algorithm

weight 
updates

All layers are differentiable

Classification
(Softmax)

Forward-propagation

𝛻
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1-SLIDE INTRO TO RECURRENT NEURAL NETS
Network + Internal State => Dependencies Over Time

= …

Diagrams from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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CATEGORIZATION BY SIGNAL

Unsupervised
learning

Supervised
learning

Reinforcement
learning

One-shot
learning

Model
Testing 

Data

Training Data

ModelUnlabeled Training Data

Model Environment

Labels (expected results)

Model
Very small set of training 

data
Use
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CATEGORIZATION BY INPUT/OUTPUT

Diagram from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Image
Classification

Image
Captions

Sentiment 
Analysis

Text Recognition

Generative
(diabolo and others)

Recurrent

Auto-encoder,
GANs
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Framework CNN speedup

2.8X

3.2X

3X

3.2X

3.3X

DEEP LEARNING OPTIMIZED FRAMEWORKS

DGX-1 (Pascal) Images/s for ResNet-50; 17.07 (cuDNN 6.0.21, NCCL 2.0.3)

Speed up is calculated for ResNet-50 using fp16 storage and 

Tensor Core Acceleration on 1 GPU (P100 to V100) 

Pascal DGX-1 Benchmarks P100 to V100
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INFERENCE
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PERSONALIZATION

2 Trillion
Messages Per Day On 

LinkedIn

AI INFERENCING IS EXPLODING

SPEECH TRANSLATION VIDEO

60 Billion
Video frames/day uploaded on 

Youtube

140 Billion
Words Per Day Translated by 

Google

500M
Daily active users of

iFlyTek
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NVIDIA TensorRT 3
Deep Learning Inference Optimizer and Runtime

developer.nvidia.com/tensorrt

High performance neural network inference optimizer 
and runtime engine for production deployment 

Maximize inference throughput for latency-critical services 
in hyperscale datacenters, embedded, and automotive 
production environments.

Optimize models trained in TensorFlow or Caffe to generate 
runtime engines that maximizes inference throughput

Deploy faster, more responsive and memory efficient deep 
learning applications with INT8 and FP16 optimized 
precision support

TensorRT 
Optimizer

TensorRT 
Runtime 
Engine

Trained 
Neural 

Network

Embedded Automotive Data center

Jetson Drive PX Tesla
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NVIDIA TensorRT 3

• Compiler for Optimized Neural Networks

• Weight & Activation Precision 

Calibration

• Layer & Tensor Fusion

• Kernel Auto-Tuning

• Multi-Stream Execution

TensorRT

Compiled & 
Optimized Neural

Network

Trained Neural
Network

Kernel Auto-tuning

Layer & Tensor Fusion

Dynamic Tensor

Memory

Weight & Activation

Precision Calibration

Multi-Stream

Execution

Programmable Inference Accelerator
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TENSORRT 3: TENSORFLOW IMPORTER AND PYTHON API

developer.nvidia.com/tensorrt

Model Importer
Network 

Definition API

Python API

Other 

Frameworks

Embedded AutomotiveData center

TensorRT Runtime

• Optimize and deploy TensorFlow models 
that are up to 18x faster vs. TensorFlow
framework

• Improved productivity with easy to use 
Python API for Data Science workflows

Python API

➢ AI Researchers
➢ Data Scientists

Optimized Model



VOLTA MULTI-PROCESS SERVICE

Hardware 
Accelerated

Work Submission

Hardware 
Isolation

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL
CPU Processes

GPU Execution

Volta MPS Enhancements:

• MPS clients submit work directly to 
the work queues within the GPU 

• Reduced launch latency

• Improved launch throughput

• Improved isolation amongst MPS clients 

• Address isolation with independent 
address spaces

• Improved quality of service (QoS)

• 3x more clients than Pascal

A B C



Efficient inference deployment without batching system

Single Volta Client,
No Batching,

No MPS

VOLTA MPS FOR INFERENCE
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Multiple Volta Clients,
No Batching,

Using MPS

Volta with
Batching 
System

7x 
faster

60% of 
perf with 
batching

V100 measured on pre-production hardware.
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Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2-

16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. P100 + TensorRT: NVIDIA TensorRT (FP16), batch size 10, Tesla 

P100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized 

TensorFlow (FP16), batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel 

Xeon-D 1587 Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement 

on Skylake with AVX512.

40x Faster CNNs on V100 vs. CPU-Only 

Under 7ms Latency (ResNet50)
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140x Faster Language Translation RNNs on 

V100 vs. CPU-Only Inference (OpenNMT)

Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-

PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. P100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, 

Tesla P100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + Torch: Torch (FP32), batch size 4, Tesla 

V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 

v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On

TENSORRT 3 PERFORMANCE

developer.nvidia.com/tensorrt
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DL + HPC: 
JOINTLY SOLVE NEW PROBLEMS, BETTER
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VISION: DATA SCIENCE DRIVES ARCHITECTURE

Data science/Deep learning needs heavily influence architecture

Extensible NVLink, CPU as orchestrator, .. 

System level: Dense nodes, high-performance intra-node communication

DGX-1/SATURNV, Big Basin, Minsky, Olympus, …

GPU level: Instruction set influenced by needs of data science

Half/mixed precision, int8, .. 

Develop HPC applications for high-density nodes (also e.g. CORAL)

Leverage the DL hardware features for scientific computing 

Facebook 
OCP Big Basin

Microsoft
Olympus

DGX-1
SATURNV
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VISION: DATA SCIENCE DRIVES SOFTWARE-
STACK

Data science mission-critical to non-traditional HPC organizations

Deep learning, graph analytics, in-core databases,..

Sustainability and performance by scale

Frameworks supported by big corps, large communities

Big market, big support by all vendors

 Economics drive performance portability and sustainability

Cast HPC algorithms in DL terms

NVIDIA is the AI computing company, thinking lots about software!

Trilinos: 143 stars, Caffe: 16’679 stars
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EXAMPLE: WAVE EQUATION VIA CONV 
NEURAL NETWORK

Applying stencils = Inference in Conv Network

Du0 =ux-1–2u+ux+1

u0

V3/2 = c dt Du0 + v1/2

u1 = dt v1/2 + u0

layer { 
name : “laplace_u”
type : “convolution”
bottom : “u_0”
top : “laplace_u”
convolution_param {

num_output : 1
kernel_size : 3
stride : 1
pad : 1

..
}

layer {
name : “velocity_update”
type : “Eltwise”
bottom : “laplace_u”
top : “velocity_update”

}

layer  {
name : “position_update”
type : “Eltwise”
bottom : “velocity_update”
top : “position_update”

}

Other examples: Stencils, Spectral transforms, spectral elements, ..  

𝑑𝑣

𝑑𝑡
= 𝑐 ∆ 𝑢

𝑑𝑢

𝑑𝑡
= 𝑣

Simplified 1D example cartoon 
Approach works for higher dimensions
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VISION: HPC CAN CONTRIBUTE TO EMERGING 
DATA SCIENCE NEEDS

DL will need distributed memory parallelism

New challenges for DL algorithms

HPC has probably hit those challenges in the past

Better implementation, better algorithms

Collaborate with DL framework developers, contribute to DL frameworks

First step: speak a common language

HPC solved lots of “new” problems in the past

https://www.hpcwire.com/2017/02

/21/hpc-technique-benefits-deep-

learning/
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VISION: COMBINED DL AND HPC

Many HPC models have “inaccurate” components, eg parameterized sub-model

Often complex control flow

A trained network might result in higher performance, better accuracy

Possible examples: collisional cross-sections, chemical reaction chains, 

Simplified if rest of application is already in DL friendly fashion

Revisit parameterized models

Jointly solve new problems, better
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COMBINING THE  STRENGTHS OF HPC AND AI

Train inference models to improve accuracy and 
comprehend more of the physical parameter space

Implement inference models with real time 
interactivity 

Analyze data sets that are simply intractable with 
classic statistical models

Control and manage complex scientific experiments or 
apparatus

HPC

+40 years of Algorithms based on first 
principles theory

Proven statistical models for accurate 
results in multiple science domains

Develop training data sets using first principal models

Apply Bayesian regression methods to expedite/ensure 
training accuracy

Incorporate AI models in semi-empirical style 
applications to improve throughput

Validate new findings from AI

New methods to improve predictive 
accuracy, insight into new phenomena 

and response time with previously 
unnavigable data sets

AI
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WHAT IF I DON’T HAVE ENOUGH 
TRAINING DATA?
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HOW MUCH TRAINING DATA IS NEEDED?

• No general answer, need to experiment 

• Test error >> training error: probably more data (overfitting?)

• Test error ≈ training error: more data probably doesn’t help

• Look at learned filters: noisy filters generally want more training

• For N functions, need > log(N)+c training cases (see: A Theory of the 
Learnable, L.G. Valiant, 1984)

• Example: N parameters of type float32 = max 232N distinct networks, wants 
32N samples.

• Rough Guideline: some constant (e.g. 10) multiple of # parameters to 
avoid overfitting

• Batch normalization, Regularization, etc can give improvement

A recursive answer
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HOW LARGE SHOULD MY NETWORK BE?

• Depends on the amount of training data available

• Too small: bad generalization; Too large: overfitting

• And the complexity of the function to be learned1

• 1-hidden layer (grows exponentially) vs. deep networks (may grow linearly)

• Rough Design Guideline:

• First and last layer are given by model

• Number of nodes of a hidden layer somewhere between the size of its 
input and output layer

• Number of nodes in layer should be < 2 * #input nodes to avoid overfitting

• The rest is Art(?)

A recursive answer

1 Y.Bengio, Y.LeCun. Scaling learning algorithms towards AI. Large-scale Kernel Machines, 2007
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HOW TO GET MORE TRAINING DATA?

• Data Augmentation and Data Synthesis

• e.g., adding artificial background noise to speech samples (10x increase for Baidu)

• e.g., adding shifts, rotations, distortions to images

And their Labels

• Training and Testing on Simulators

• Domain Randomization for Transferring Deep Neural 
Networks from Simulation to the Real World, J. Tobin et 
al., Robotics 2017

• Self-Driving Vehicles Playing for Data: Ground Truth 

from Computer Games, S.Richter et al., ECCV, 2016)

• One-shot Learning, GANs (Apple uses GANs to 
improve generated training data), Autoencoders?
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From: K.Cranmer. Machine Learning & Likelihoos Free Inference in Particle Physics, NIPS2016

EXAMPLE: PARTICLE PHYSICS (CERN)
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MY DATA IS SYMMETRIC OR 
INVARIANT IN XYZ?
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INVARIANTS AND SYMMETRIES IN DATA

• CNNs don’t understand Invariants and Symmetries out of the box

• Pooling and downsampling helps with some transformations

• (Training and Test-time) Data augmentation may explode the training set

• Scale/Rotate/Transform/Perturbate each training image many times?

• Approaches:

• Teach networks about certain symmetries (e.g. rotation)

• Normalize/preprocess data to ensure well-known layout

• Find encoding of the data that is invariant to certain operations

Pattern Recognition
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EXPLOITING SYMMETRY IN CONV NETS
Teaching CNNs about Rotation

From: S.Dieleman et al. Exploiting Cyclic Symmetry in Convolutional Neural Networks, CoRR, 2016
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NORMALIZING AND PRE-PROCESSING 
DL trained on jet images vs. physically-motivated feature driven approaches

From: L. de Oliveira et al., Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis, 2017

From: L. de Oliveira et al., Jet-Images -- Deep Learning Edition, JHEP07, 2016
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INVARIANT ENCODING

Molecules are 
encoded as Vectors 
of Nuclear Charges 
and Inter-atomic 
Distance Matrices 

=> Translation and 
rotation Invariant 
Representation

From: K.Schütt et al., Quantum-Chemical Insights from Deep Tensor Neural Networks, arXiv:1609.08259
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HOW DO I REPRESENT MY DATA IN 
NEURAL NETWORKS?
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SIMPLE EXAMPLE: CLASSIFICATION
One-Hot Encoding

Training Data Scalar Encoding

[0.0]
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[2.0]
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One-Hot Encoding

[1,0,0,0,0,0,0,0,0,0]

[0,1,0,0,0,0,0,0,0,0]

[0,0,1,0,0,0,0,0,0,0]
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[0,0,0,0,1,0,0,0,0,0]

[0,0,0,0,0,1,0,0,0,0]

[0,0,0,0,0,0,1,0,0,0]

[0,0,0,0,0,0,0,1,0,0]

[0,0,0,0,0,0,0,0,1,0]

[0,0,0,0,0,0,0,0,0,1]
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IMAGE SEGMENTATION & 
BOUNDING BOXES

Creative use of feature channels

Diagram From: B.Li, T.Zhang, T.Xia. Vehicle Detection from 3D Lidar Using Fully Convolutional Network, CoRR, 2016

GIF from: https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/

Downsampling
Upsampling

(same-size output)

1 Channel 
per Object 
Class (incl. 

Background)

1 Channel 
per BB point 
coordinate
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ORGANIZING SPEECH INTO FEATURE MAPS
Reducing Problems to Image Recognition

From: Ossama et al. Convolutional Neural Networks for Speech Recognition, IEEE/ACM Trans. Audio, Speech, and Lang. Proc, 2014
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ENCODING TIME SERIES AS IMAGES
Gramian Angular Fields (GAF) and Markov Transition Fields (MTF)

From: Z.Wang, T.Oates. Encoding Time Series as Images for Visual Inspection and 
Classification Using Tiled Convolutional Neural Networks, AAAI Workshop, 2015
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DL FOR SIGNAL PROCESSING
Looking for Gravitational Waves

From: D.George, E.A.Huerta. Deep Neural Networks to Enable Real-time Multimessenger Astrophysics, arXiv:1701.00008 [astro-ph.IM]

Classifier:
Detect Presence of 

GWs

Regression:
Parameter 
Estimation 

(i.e., masses of the 
two black holes)
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HOW CAN I TRUST THE NETWORK?
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EULERIAN FLUID SIMULATION WITH 
CONVOLUTIONAL NETWORKS

Produces “visually similar results”, but is it “science”?

From: J. Tompson et al. Accelerating Eulerian Fluid Simulation With Convolutional Networks, https://arxiv.org/abs/1607.03597
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“DEEP NEURAL NETS ARE BLACK BOXES”

• If a network performs well on the test data and appears to work 
reasonably well on real data…

• Can we trust it?

• Are there formal error bounds on the recognition accuracy?

• E.g., would you trust a trained NN to operate your nuclear power plant?

• How to get out learned theory? (e.g. CERN and the Standard Model)

• Field of active research (DARPA, MIT, Capital One, many others)

• Debugging and Understanding NN behavior

• Rationales for network decisions

… even if you can look at the internals…
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ATTACKING NEURAL NETWORKS

1. Run input x through the classifier model

2. Derive a perturbation tensor that maximizes 
chances of misclassification:

1. Find blind spots in input space; or

2. Linear perturbation in direction of neural network’s 
cost function gradient; or

3. Select only input dimensions with high saliency*

3. Apply scaled effective perturbation (δx) to x

1. Larger perturbation == higher probability for 
misclassification

2. Smaller perturbation == less likely for human 
detection

Spoofing and Malicious Misclassification

Small Pixel-level Pertubations

900.00Recognized Amount:
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LOOKING INSIDE NEURAL NETS

• Inspecting the NN

• Visualize activations, filters, generate input that 
maximizes activation of a neuron

• Occlude parts of the input and check expectations

• (e.g., http://cs231n.github.io/understanding-cnn/)

• Capture Model Confidence, Estimate Uncertainty

• Place Gaussian Distribution over Weights => Bayesian 
Neural Networks

• G.Yarin. Uncertainty in Deep Learning, PhD Thesis, 
University of Cambridge, 2016

• How to gain scientific insight from a trained network?

Debugging, Understanding, Verifying
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SOME SUCCESS STORIES
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Background
Developing a new drug costs $2.5B and takes 10-15 years.  Quantum chemistry 

(QC) simulations are important to accurately screen millions of potential drugs to 

a few most promising drug candidates.

Challenge
QC simulation is computationally expensive so researchers use approximations, 

compromising on accuracy.  To screen 10M drug candidates, it takes 5 years to 

compute on CPUs.

Solution
Researchers at the University of Florida and the University of North Carolina 

leveraged GPU deep learning to develop ANAKIN-ME, to reproduce molecular 

energy surfaces with 100,000x speedup, extremely high (DFT) accuracy, and at 1-

10/millionths of the cost of current computational methods. The new algo can 

screen 10M drug candidates in 8 minutes.

Impact
Faster, more accurate screening of new drugs to save tons of money.

ACCELERATING QUANTUM 
CHEMISTRY WITH DL FOR 

DRUG DISCOVERY
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Background
The NoVA experiment managed by Fermi lab comprises 200 scientists at 40 institutions in 7 

countries. The goal is to track neutrino’s, which are often referred to as the “Ghost 

Particle”, and detect oscillation which is used to better understand how this super abundant, 

and elusive particle interacts with matter.

Challenge
The experiment is built underground and is comprised of a main injector beam and two large 

detector apparatus located 50 miles apart. The near detector is 215 Tons and the Far 

detector is 15,000 Tons. The experiment can be thought of as a 30 Mn pound detector that 

takes 2 Mn pictures per second.

The detectability of the current experiment is proportional to the size of the detectors, so 

increasing the “visibility” is complex and costly.

Solution
A DNN was developed and trained using a data set derived from multiple HPC simulations 

including GENIE and GEANT using 2 K40 GPU’s. the CVN was basd on convolutional neural 

networks used for image processing

Impact
The result was an overall improvement of 33%, where the optimized CVN signal-detection-

optimized efficiency of 49% is a significant gain over the efficiency of 35% quoted in prior 

art. This would net to a 10Mn pound increase the physical detector

FINDING THE “GHOST 
PARTICLE” WITH AI
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Despite the latest development in computational 
power, there is still a large gap in linking 
relativistic theoretical models to observations. 
Max Plank Institute

Background
The LIGO (Advanced Laser Interferometer Gravitational Wave Observatory) 

experiment successfully discovered signals proving Einstein’s theory of General 

Relativity and the existence of cosmic Gravitational Waves. While this discovery 

was by itself extraordinary it is seen to be highly desirable to combine multiple 

observational data sources to obtain a richer understanding of the phenomena.

Challenge
The initial LIGO discoveries were successfully completed using classic data 

analytics. The processing pipeline used hundreds of CPU’s where the bulk of the 

detection processing was done offline. Here the latency is far outside the range 

needed to activate resources, such as the Large Synaptic Space survey Telescope 

(LSST) which observe phenomena in the electromagnetic spectrum in time to 

“see” what LIGO can “hear”.

Solution
A DNN was developed and trained using a data set derived from the CACTUS 

simulation using the Einstein Toolkit. The DNN was shown to produce better 

accuracy with latencies 1000x better than the original CPU based waveform 

detection.

Impact
Faster and more accurate detection of gravitational waves with the potential to 

steer other observational data sources.

GRAVITATIONAL 
ASTROPHYSICS
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Background
Grand challenge of fusion energy offers mankind changing opportunity to provide 

clean, safe energy for millions of years.  ITER is a $25B international investment in 

a fusion reactor. 

Challenge
Fusion is highly sensitive, any disruption to conditions can cause reaction to stop 

suddenly.  Challenge is to predict when a disruption will occur to prevent damage 

to ITER and to steer the reaction to continue to produce power.  Traditional 

simulation and ML approaches don’t deliver accurate enough results. 

Solution
DL network called FRNN using Theano exceeds today's best accuracy results.  It 

scales to 200 Tesla K20s, and with more GPUs, can deliver higher accuracy.  Goal is 

to reach 95% accuracy. 

Impact
Vision is to operate ITER with FRNN, operating and steering experiments in real-

time to minimize damage and down-time. 

PREDICTING DISRUPTIONS IN 
FUSION REACTOR USING DL



Axel Koehler (akoehler@nvidia.com)


