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History of CMT

Walter Fischer and Hans Rudolf Ott were instrumental in the
creation of a condensed matter theory group (CMT) at PSI within
the division Festkörperforschung mit Neutronen (FUN) to be
modeled on the high-energy theory group at PSI.
DIRK approved the creation of CMT in 1997 within FUN with four
staff positions of which three were already filled by Rudolf Morf,
Bernard Delley, and Hans-Benjamin Brown. Christopher Mudry
was chosen as a fourth member after an open search in 1999.
Christopher Mudry replaced Rudolf Morf as group head in 2009.
Peter Derlet joined CMT in 2009.
Xavier Deupi joined CMT in 2010.
Markus Müller joined CMT in 2015.
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Mission of CMT

1 To maintain state-of-the-art expertise on the forefront of theoretical
research in classical and quantum condensed matter theory.

2 To conduct original, independent, and curiosity-driven research in
classical and quantum condensed matter theory.

3 To nurture internal collaboration at PSI, to provide theoretical
support to the experimentalists at PSI, and to inspire experiments
to test new concepts in classical and quantum condensed matter
theory.
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Christopher Mudry: Biography
Born in 1962, raised in Geneva until high-school graduation.
Physics Diploma from ETHZ with diploma thesis “Viability of
Gluon Annihilation into a Higgs Associated to a Pair of Top Quarks
as a Mechanism for detecting the Heavy Higgs in SSC,” under
Prof. C. Schmid and Prof. D. Wyler.
Obtained in 1994 PhD from UIUC (University of llinois at Urbana
Champaign) with thesis title “The Problem of Spin and Charge
Separation,” under Prof. Eduardo Fradkin.
Postdoctoral position at MIT with Prof. Xiao-Gang Wen:
Disorder-induced quantum criticality.
Postdoctoral position at Harvard with Prof. Bertrand I. Halperin:
Quasi-one-dimensional quantum transport.
As of 1999, staff of CMT at PSI: disordered systems,
unconventional superconductivity, frustrated magnetism,
graphene, topological insulators, topological order, etc.
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Christopher Mudry: Miscellaneous at PSI

– 2000-2016: Initiated and ran the CMT journal club and CMT
seminar.

– 2002-2018: Lecture one semester a year, mostly at ETHZ.
– 2003-2018: Supervised 4 PhD students, all co-funded by SNF.
– 2005-2016: Initiated and co-ran the Condensed Matter

Colloquium at PSI. Ran the PSI colloquium until 2016.
– 2014-2018 Member of FOKO.
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Christopher Mudry: Example I of research interests

Question: What mechanisms can deliver high-temperature
multiferroics?
Answer I: Disorder can under certain circumstances!
Answer II: Answer I is relevant to YBaCuFeO5
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Christopher Mudry: Example I motivation

(a) (b)

Examples of helical order (a) Spiral order (b) Cycloidal order.
Helical order breaks inversion symmetry, a prerequisite for
multiferroelectricity.
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Christopher Mudry: Example I history of YBaCuFeO5

1988 Er-Rakho, Michel, Lacorre, and Riveau discovered YBaCuFeO5.

2015 Morin, Scaramucci, Bartkowiak, Pomjakushina, Deng, Sheptyakov, Keller,
Rodriguez-Carvajal, Spaldin, Kenzelmann, Conder, and Medarde resolved a
long-standing controversy regarding the crystalline structure of YBaCuFeO5.
They also identified the incommensurate magnetic order as being an
antiferromagnetic spiral which they characterized in a quantititative way.

2016 Morin, Canévet, Raynaud, Bartkowiak, Sheptyakov, Ban, Kenzelmann,
Pomjakushina, Conder, and Medarde increased the transition temperature to the
spiral phase up to 310 K through a controlled manipulation of the Fe/Cu
chemical disorder.
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Christopher Mudry: Example I who did what
Scaramucci (at ETHZ) used DFT to model (i) the energy cost for
defectuous corner sharing square pyramids, i.e., instead of
CuO5 � FeO5 consider CuO5 � CuO5 or FeO5 � FeO5:

! Jr ,r 0 2
n

Jk, J
0
?, J?, Jimp

o
(1a)

and (ii) the single-ion anisotropy � entering the proposed classical
spin Hamiltonian

H ..= HO(3) + H
DM

+ H
SIA

, (1b)

HO(3) ..= �1
2

X

r ,r 0
Jr ,r 0 Sr · Sr 0 , (1c)

H
DM

..=
1
2

X

r ,r 0
Drr 0 · (Sr ^ Sr 0) , (1d)

H
SIA

..=
�

2

X

r
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Hiroshi Shinaoka performed classical Monte-Carlo simulations of
HO(3) + H

SIA
and established a transition to antiferromagnetic order

followed by a transition to spiral order upon decreasing temperature.

Scaramucci, Mudry, and Müller (at
PSI) proposed an approximation to
the classical Hamiltonian (1) from
which it was possible to deduce
analytically that the ordering
temperature for the spiral phase is
proportional to the impurity
concentration n

imp
of the frustrated

Heisenberg bonds. This theoretical
prediction has been verified by
Medarde et al. at PSI (manuscript
in preparation).
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Christopher Mudry: Example II of research interests
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Markus Müller  - Brief Biography

• Born 1976, grown up in Münchenstein BL
• Diploma in Physics, ETH Zürich, 2000

“Pinning of disordered elastic manifolds”
• PhD: LPTMS, Paris-Sud, Orsay, 2003

“Folding of heteropolymers” (classical stat mech, glasses)
• Postdoc: Rutgers, 2003-2006 (quantum glasses/localization)

Harvard, 2006-2008 (quantum criticality, quantum transport, 
hydrodynamics of electrons)

• SNF Junior Professorship, Geneva 2008-2009
• Staff Scientist at ICTP Trieste 2009-2016
• @ CMT/PSI since 2015:

- Organization of PSI, CM Colloquia, CMT seminar
- Board member of Quantum Technology Collaboration
- Effort toward non-equilibrium, driven systems, quantum control (NCCR?)

Exploit SwissFEL
Use it in new ways
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Research activity and interests

Fields of research :

• Complexity and non-ergodicity in disordered & interacting systems:
• Glasses, amorphous systems
• (Many-body) localization: 

Non-thermalization despite interactions
• Disordered bosons/fermions

• Quantum and classical magnetism; 
frustrated magnets

• Quantum transport 
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Example	II



11.12.2017	- Adrian	Beckert

Example I: Quantum coherence and quantum 
computation in random magnets

Hole burning and magnetic q-bits in rare earth magnets:

Current SNF project: 

Joint experiment (Adrian Beckert) + theory (Manuel Grimm)

Based on long-standing, mysterious experiments
(G. Aeppli & T. Rosenbaum et al., 2002++)
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Quantum coherence in rare earth magnets

1)	Explaining mysterious quantum coherence in LiYHoF4

Further goals:

2) Quantum computing scheme based on 
§ nuclear spins as memory qubits
§ rare earth electronic spins as working qubits  

3) Induce magnetic order by driving 
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Hole burning

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Brillouin func�on:

Sets eDec�ve energy scale for cluster ~ 0.13 K

Hole burning at low ! in AC susceptibilityHole burning

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Brillouin func�on:

Sets eDec�ve energy scale for cluster ~ 0.13 K

Non-linear pumping at low !	
saturates absorption
(“a sharp hole is burnt”)!

Afterwards: Persistent ringing!

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Hole burning

→ Coherent oscillators at 
ultra-low frequencies O(10Hz) << T ???
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Hole burning

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Brillouin func�on:

Sets eDec�ve energy scale for cluster ~ 0.13 K

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Hole burning

Hole burning at low ! in AC susceptibilityHole burning

S. Ghosh et al. “Coherent spin oscilla�ons in a disordered magnet.,” Science, vol. 296, no. 5576, pp. 2195–2198, 2002.

Brillouin func�on:

Sets eDec�ve energy scale for cluster ~ 0.13 K

Lots of theoretical reasoning 
and conclusion by elimination:

Coherence cannot be due to 
usual suspects: Ho!

But: Nuclear spins, polarizing 
paramagnetic electronic spins:
→ Very low frequency el-nuclear two-level systems
→ Frozen moments stabilize themselves by

weak polarization of environment.

→ Plan: build on electro-nuclear coupling to 
make and entangle qubits
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Example II: Off-equilibrium electrons

Electronic hydrodynamics: driven quantum fluids

Collision-dominated transport in electronic systems  
(MM, L. Fritz, J. Schmalian, S. Sachdev 2008/9)

→ Flow of quantum fluids? Electron hydrodynamics?

Yes, if:

1) Electron-electron interactions are marginal: 

→  Fermi liquid, with strong coupling down to low T!

2) Momentum is well conserved (not lost to lattice!)

Theoretical predictions confirmed in graphene, and in other 
Dirac/Weyl matter!

→ Hydrodynamics of a relativistic plasma
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Example II: Off-equilibrium electrons
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M.	Beria,	Y.	Iqbal,	M.	DiVentra,	MM	PRA	88,	043611	(2013)	

Steady state of flows in non-interacting driven fermions? 

BERIA, IQBAL, DI VENTRA, AND MÜLLER PHYSICAL REVIEW A 88, 043611 (2013)
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ŷ

W
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FIG. 1. (Color online) Studied setup: a narrow channel (A)
connected to a wide region (B). In the microcanonical setup the dashed
boundaries at ±L are hard walls, while they represent Markovian
leads in the Lindblad approach. For large L, the steady-state pattern
near the orifice may be expected to be the same in the two approaches.

II. MODEL

In this work, we consider a two-dimensional Fermi gas in
the setup shown in Fig. 1: a narrow channel (A) of width
ϵ is connected at x = 0 to a much wider region (B) of width
W = 4ϵ (in all figures, if not specified otherwise). We study the
current flow, as the out-of-equilibrium free Fermi gas is driven
from A to B. We are interested in the limit of very long regions,
L → ∞. This problem is solved using two complementary
approaches: the microcanonical formalism [33,34] for a closed
system, and the Lindblad equation in what was called the “third
quantization” formalism [35,36] for a driven open system.
While the first method allows us in principle to follow the entire
dynamics at every instant of time, the second one accesses
directly the steady-state properties.

A. Microcanonical approach

We prepare fermions of mass m in the ground state of the
Hamiltonian H0 = −h̄2

2m
∇2 + Vinθ (x) at chemical potential µ,

in the setup of Fig. 1, where θ (x) is the Heaviside step function.
This results in average densities n̄A and n̄B in regions A, and
B, respectively. We consider L ≫ 1/n̄Aϵ, so as to simulate
a quasi-infinite system. At t = 0, we suddenly quench the
potential to H = −h̄2

2m
∇2 + Vfinθ (−x), and study the ensuing

time evolution. As explained below, we only work with
combinations of biases (Vin,Vfin) for which either the initial
or the final potential is zero. In all numerical implementations
we discretize the system on a square lattice with lattice constant
a, using a tight-binding model with hopping g = h̄2

2ma2 .
In order to highlight the effect of quantum statistics

within the microcanonical approach, we compare two different
protocols. The first protocol, which we refer to as expansion
into fermions, starts from an initial state with a roughly
equal average density throughout the closed geometry. This
is obtained by fixing the initial potential to Vin = 0 which
establishes a chemical potential µ in the sample. At t = 0,
a bias of the order of the chemical potential, Vfin ≈µ/2, is
turned on in region A, so as to push the fermions out of the
narrow channel into the large box B. Under the influence of this
bias, the fermions are forced to exit from the narrow channel,
and flow into the Fermi sea, which is already present in the
box B. Note that the density profile of the latter is not entirely
uniform, but oscillates in the transverse direction, because of
the boundary conditions imposed at y = ±W .

In the second protocol, which we refer to as expansion into
free space, the initial state is prepared by applying a large
potential Vin ≫ µ to region B, such that the gas is initially
confined to the narrow channel only. At t = 0, the potential is
released, and the gas is left to expand freely (Vfin = 0) into the
empty region B.

We will compare these two protocols to highlight the role
of finite density, and its oscillations in region B. The latter
are relevant only in the expansion into fermions protocol. The
quasisteady states obtained within that protocol are the closest
to the steady states that one can realize within driven open
systems, which will be addressed in the next subsection.

We are interested in a quasisteady current flow in the
vicinity of the orifice, within a large time window h̄/µ !
t ! L/vF , where vF ≈

√
2µ/m. In order to ensure this, we

always choose the conserved number of fermions N , and the
potentials Vin/fin such that the narrow channel is populated with
a finite density in the initial state. In an expansion into fermions
where no potential is applied in the initial state, i.e., Vin = 0,
a finite initial density in channel A requires that n̄Bϵ2 > π

4
(assuming that n̄BW 2 ≫ 1, which we always ensured). Since
the wave function remains a Slater determinant at all times, it is
enough to solve for the time-dependent single-particle eigen-
values, and eigenfunctions before the quench, H0ψ

(0)
α (x,y) =

Eαψ (0)
α (x,y), and afterwards, Hψβ(x,y) = Eβψβ(x,y). To

this effect, both the pre- and postquench Hamiltonians H0
and H , respectively, are exactly diagonalized, and the time-
dependent density and current density are obtained as

⟨n̂(x,y,t)⟩ =
∑

α∈occ

∑

β,β ′

ψ∗
β (x,y,t)ψβ ′ (x,y,t)'∗

βα'β ′α,

⟨Ĵ(x,y,t)⟩ = h̄

m
Im

[
∑

α∈occ

∑

β,β ′

ψ∗
β (x,y,t)

×∇ψβ ′(x,y,t)'∗
βα'β ′α

]

, (1)

where

'αβ =
〈
ψ (0)

α

∣∣ψβ

〉
(2)

are overlaps between eigenstates of the initial and final
Hamiltonian, and the time evolution is simply given by

ψβ(x,y,t) = ψβ(x,y)e−iEβ t . (3)

The summation over α in Eq. (1) is restricted to the set of
states (labeled as occ) that are occupied in the initial Fermi
sea. Herein lies the central difference with a system of ideal
bosons, where only the lowest energy state would be occupied,
which leads to rather trivial patterns. We found numerically
that at any fixed position close to the orifice, after an initial
transient a steady state establishes, a result which is in fact not
obvious for free fermions.

B. Lindblad equation

In order to directly access the nonequilibrium steady-state
properties and compare with the microcanonical results we
consider again the setup of Fig. 1, but now taking the dashed
boundaries to represent couplings to driving Markovian baths.
The density matrix ρ(t) of this open quantum system evolves

043611-2

Let free fermions stream 
out from suddenly opened
a constriction,  #~%&

Steady state establishes over intermediate times! 
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Non-interacting fermions: Interference 
patterns in driven fermions

Page	10

Magnetic field in the steady state?

Current (j) and vorticity curl(j)
in the steady state

Low density: ' = 1.1 #2⁄ non-trivial flow!

BERIA, IQBAL, DI VENTRA, AND MÜLLER PHYSICAL REVIEW A 88, 043611 (2013)

(a) (b)
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FIG. 6. (Color online) (a) The current-density pattern and the intensity of the corresponding vorticities are shown for n̄ϵ2 ≈ 1.3 in the
microcanonical quench protocol (snapshots are taken at time t ≈ 16 h̄

µ
): (a) Vin = 0 (roughly homogeneous initial density), Vfin ≈ µ/2 applied

to region A; (b) expansion into empty space, Vin ≫ 1 (region B initially empty), Vfin = 0. The vorticity patterns in the two cases are evidently
very different. In particular, in case (b) of the expansion into the initially empty region B, there is no evidence of nontrivial features in the current
flow and vorticity close to the orifice, in contrast to case (a). This shows that a finite density in region B and the associated Friedel oscillations
in the steady state are important for the formation of nontrivial flow patterns. In both cases, we chose W = 14ϵ so that the boundaries at ± W

are rather far from the orifice and the difference between the two quench protocols is evident. The color code is the same for both figures. Note
the aspect ratio of 7:5 of the axis scales.

form a complicated structure of currents and vorticities (see
Appendix B for the corresponding figures and discussion).

IV. POSSIBLE EXPERIMENTAL VERIFICATION

If the fermions are charged, such as in a 2d electron
gas (which may still be considered weakly interacting in the
presence of a strong dielectric) a complex current pattern as in
Fig. 4(a) generates a nontrivial magnetic-field distribution. To
obtain the same, one defines

b(r = {x,y,z}) = µ0

4π

∫
dx ′dy ′j(r′) × r − r′

|r − r′|3
, (5)

where µ0 is the permeability of vacuum, and j is the 2d number
current density of atoms in the x-y plane (z = 0). It then
follows from the Biot-Savart law that the magnetic field B(r)
generated by moving particles of charge e is given by

B(r) = eb(r). (6)

For strong drivings (Vfin ∼ µ) in the considered geometry,
typical magnetic moments associated with the circulation
patterns are of the order of a tenth of a magneton µ = eh̄

2m
,

that is, in principle, an experimentally accessible intensity.
Interestingly, the vorticity maxima organize in a short-range
correlated antiferromagnetic pattern, which realizes an out-
of-equilibrium staggered flux state, cf. Fig. 7, reminiscent
of equilibrium staggered flux phases proposed in strongly
correlated 2d systems [44,45]. Similar patterns arise from
currents of magnetically (electrically) polarized neutral atoms.
The electric (magnetic) fields due to such moving dipoles are
proportional to a derivative of the field pattern of Fig. 7, and
are given by

E(r) = −(m · ∇)b(r). (7)

with E(r) being the electric field, and m the static magnetic
moment. Similarly, the magnetic field produced due to polar-
ized neutral particles with a static electric dipole d is given by

B(r) = (d · ∇)b(r). (8)

However, these fields may be too weak to be detected by
present experimental means. It may be interesting to look for
similar patterns in systems which have spin-orbit coupling,
e.g., in cold atoms.

Apart from the currents, the density patterns computed in
this paper can be measured experimentally by resonant light
absorption in atomic gases in optical lattices. The limiting
resolution is currently ∼660 nm [46], which is smaller
than typical Fermi wavelengths in those systems. The setup
discussed here has already been realized in recent experiments
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ŷ
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FIG. 7. (Color online) The z component of the magnetic field
generated by a charged current flow as in Fig. 4(a): The quasisteady
state exhibits a staggered flux close to the orifice.
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FIG. 4. (Color online) Current density J and contour plot of |∇ × J| computed in the microcanonical quasisteady state, for increasing
density. From left to right: n̄ϵ2 ≈ 1.1, n̄ϵ2 ≈ 2.2, n̄ϵ2 ≈ 4.8. The most interesting patterns are observed at relatively low density, n̄ϵ2 ∼ 1.

We interpret the origin of the complex current patterns as
arising from current flow through regions that exhibit boundary
induced Friedel oscillations in the steady-state density. These
oscillations are provoked by a finite lateral confinement (finite
W ), even though W 2n̄ may be fairly large. The current flow
appears to avoid regions of higher density in the steady state,
which leads to nontrivial vorticity patterns. This is illustrated
in Fig. 5, which shows that in an expansion into fermions, the
y component of the current density is strongly anticorrelated
with the density oscillations in region B in the steady state.
This suggests that one may view both effects as consequences
of Pauli exclusion, which leads to Friedel oscillations in the
density and the currents, in the steady state.

The patterns farther from the orifice (x ! 4ϵ) depend,
naturally, rather strongly on the presence of the boundaries,
as they are dominated by interference of waves that are
reflected from the boundaries. If instead one considers periodic
boundary conditions in the y direction, the patterns are
dominated by interference of waves that wind around the
cylinder. However, near the orifice, the effect of changing
boundary conditions is much less pronounced. Even though
the vorticity pattern is modified quantitatively, it remains
qualitatively similar (see Appendix A).

Even though from Eq. (1) it is clear that the current density
is simply the superposition of single-particle contributions, the
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FIG. 5. (Color online) The profile of the spatial density (dashed
blue line) and the y component of the current density (solid red line)
along the cross sections at x = 2ϵ (a), and 4ϵ (b). Density oscillations
and the current are anticorrelated. The corresponding values have
been rescaled to visually pronounce the anticorrelated behavior.

resulting pattern is quite nontrivial, as forward and backward
propagating states superpose, each with their individual inter-
ference patterns. The higher the initial density the larger is
the number of superposed modes, which tends to smoothen
the interference patterns. Interesting patterns survive for low-
density n̄ϵ2 ! π/4, while in the limit n̄ϵ2 → ∞ we expect to
recover the classical limit where all nontrivial features are
smeared out. We illustrate this trend in Fig. 4, where the
current patterns obtained for increasing densities are shown.
Nontrivial structures emerge at low density where the Fermi
wavelength is comparable with the orifice width, provided
that current is flowing into a nonempty region B. Under these
circumstances the Pauli exclusion leads to boundary induced
Friedel oscillations in region B, which appear to play a crucial
role, and induce the observed vorticity patterns.

The importance of an appreciable density of fermions in
region B and the associated density oscillations in the steady
state can be best appreciated by comparing an expansion
into fermions with an expansion into free space. We work at
low density (n̄ϵ2 ≈ 1.3) within the microcanonical formalism.
Figure 6(a) shows the steady-state pattern of current and
vorticity in an expansion into fermions.

We contrast the above protocol with an expansion into
empty space, with very similar initial density in region A.
Figure 6(b) shows the resulting flow pattern, which exhibits
hardly any interesting features. We interpret this as being
due to the low steady-state density of fermions in region B,
such that density oscillations in that area are very weak and
have little effect on the current flow. The main conclusion
from this comparison is that it is not merely the geometry
that is relevant for producing interesting interference patterns
in driven fermions, but also the presence of an appreciable
steady-state density in the relevant spatial regions.

For a driven open system, we obtain similar steady-state
properties, but the details of the flow patterns differ, due to the
pronounced role of reflections from the boundaries at x = ± L,
which act as a semitransparent wall causing partial reflection
of the particle flux. These reflected waves are also the cause of
minor differences in the density patterns of Figs. 2(d) and 3(b).
Consequently, the reflected and incoming waves interfere to

043611-5
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Staggered field pattern, with measurable 
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Non-interacting fermions: Interference 
patterns in driven fermions
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Steady state patterns

More analytical insight?

PSI	Fellow	M.	Schütt,	MM	in	progress	
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Non-interacting fermions: Interference 
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Steady state patterns

Scattering States in 2D Rotational Symmetric Setups:
Constructing Non-Equilibrium Steady-State Conditions

Michael Schütt1

1
PSI

I. IN BRIEF

The system we aim to describe, is set up like a Landau-Büttiger ballistic transport setup [1]. We have a left
and a right thermal reservoir, which is considered to be infinite and interacting. In between, we have a ballistic,
non-interacting region through which transport takes place, see Fig. 1.

In contrast to the conventional Landau-Büttiger scenario we ignore for now the aspects of transmittance, and
focus instead on the non-equilibrium interference pattern emerging around obstacles in the transport region. Since
the reservoirs are interacting and infinite, a steady state forms in the sense that the boundary conditions imposed
on the non-interacting transport channel are time independent. Thus the notion of a non-equilibrium steady state
interference pattern is well defined.

FIG. 1. Schematic illustration of the considered setup.

We will first solve the corresponding Schrödinger equation and find a suitable wave-function basis to express possible
solutions before we construct the many electron states and formulate the non-equilibrium boundary condition. We
will then continue to study density and current patterns as well as emerging magnetic fields. For convenience we will
for the most part stick to natural units and even chose the mass of free particles to be 1/2 such that E = k2.

II. MODEL

The system we have to solve, is the free Hamiltonian with an infinite strong radial potential at the origin V (|r|) =
limV0!1 V0✓(R� r). We read:

Ĥ = �r
2 + V (|r|). (1)

Since the potential has radial symmetry, we will consider the Schrödinger equation in polar coordinates, which can
be found in App. A.

4

FIG. 4. Total density fluctuations for a variety of di↵erent applied Fermi wave vectors. The o↵ diagonal component is included
only to linear order, see App.B for details.

FIG. 5. The current streams imposed on the magnitude of the local current vector, for a the case four di↵erent arithmetic
averages 2 < kF >= kL

F + kR
F .

2. Density: O↵-Diagonal Part

The o↵ diagonal part is the only part that is direction dependent and contains therefore the steady state corrections
to the Friedel-oscillations. The variation of the density oscillations in the vicinity of the obstacle for di↵erent Fermi
wave vectors are depicted in Fig. 4 For simplicity we considered the T = 0 case where the Fermi wave vectors from
the two reservoirs are so close to each other that a linearization is feasible.

The change of the total amplitude is related to the fact that with larger Fermi wave vectors the total density of
the system rises (⇢ ⇠ k2F ). The general observation is that only when RkF . 1, the magnitude of the oscillation is
comparable to the overall density and thus the oscillations are significant. For larger values, the oscillations become
wilder but also relatively smaller. (can we make this statement quantitative via asymptotics? )

D. Current

Following the same calculations for the current, we find that the diagonal components vanish entirely. This is
in so far consistent, as the diagonal part was responsible for the equilibrium patterns of the density which has no
equivalence in the current. The details on the treatment of the current operator can be found in App. B. As for the
density, we consider T = 0 and a regime where the Fermi wave vectors are close to each other, so that we can linearize.
As a consequence we find the local current density j(r), which is plotted as streams imposed on the magnitude of the
local current in Fig. 5.

We find that the current bends around the obstacle without any further alterations see the vector field in Fig. 8.
Consequential it is obvious that the divergence vanishes as it should. Another interesting question arises from the
bending of the current: a locally bending current creates, due to Maxwell’s relations a local magnetic, which is
proportional to r ⇥ j. If we calculate the curling of the configurations above, we find a rather strongly patterned
configuration as depicted in Fig. 6

Flow of Fermi gas around 
the obstacle
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I. IN BRIEF

The system we aim to describe, is set up like a Landau-Büttiger ballistic transport setup [1]. We have a left
and a right thermal reservoir, which is considered to be infinite and interacting. In between, we have a ballistic,
non-interacting region through which transport takes place, see Fig. 1.

In contrast to the conventional Landau-Büttiger scenario we ignore for now the aspects of transmittance, and
focus instead on the non-equilibrium interference pattern emerging around obstacles in the transport region. Since
the reservoirs are interacting and infinite, a steady state forms in the sense that the boundary conditions imposed
on the non-interacting transport channel are time independent. Thus the notion of a non-equilibrium steady state
interference pattern is well defined.

FIG. 1. Schematic illustration of the considered setup.

We will first solve the corresponding Schrödinger equation and find a suitable wave-function basis to express possible
solutions before we construct the many electron states and formulate the non-equilibrium boundary condition. We
will then continue to study density and current patterns as well as emerging magnetic fields. For convenience we will
for the most part stick to natural units and even chose the mass of free particles to be 1/2 such that E = k2.

II. MODEL

The system we have to solve, is the free Hamiltonian with an infinite strong radial potential at the origin V (|r|) =
limV0!1 V0✓(R� r). We read:

Ĥ = �r
2 + V (|r|). (1)

Since the potential has radial symmetry, we will consider the Schrödinger equation in polar coordinates, which can
be found in App. A.

I. Construct steady state by filling left- and right 
inflowing scattering states up to VL/R

4

FIG. 4. Total density fluctuations for a variety of di↵erent applied Fermi wave vectors. The o↵ diagonal component is included
only to linear order, see App.B for details.

FIG. 5. The current streams imposed on the magnitude of the local current vector, for a the case four di↵erent arithmetic
averages 2 < kF >= kL

F + kR
F .

2. Density: O↵-Diagonal Part

The o↵ diagonal part is the only part that is direction dependent and contains therefore the steady state corrections
to the Friedel-oscillations. The variation of the density oscillations in the vicinity of the obstacle for di↵erent Fermi
wave vectors are depicted in Fig. 4 For simplicity we considered the T = 0 case where the Fermi wave vectors from
the two reservoirs are so close to each other that a linearization is feasible.

The change of the total amplitude is related to the fact that with larger Fermi wave vectors the total density of
the system rises (⇢ ⇠ k2F ). The general observation is that only when RkF . 1, the magnitude of the oscillation is
comparable to the overall density and thus the oscillations are significant. For larger values, the oscillations become
wilder but also relatively smaller. (can we make this statement quantitative via asymptotics? )

D. Current

Following the same calculations for the current, we find that the diagonal components vanish entirely. This is
in so far consistent, as the diagonal part was responsible for the equilibrium patterns of the density which has no
equivalence in the current. The details on the treatment of the current operator can be found in App. B. As for the
density, we consider T = 0 and a regime where the Fermi wave vectors are close to each other, so that we can linearize.
As a consequence we find the local current density j(r), which is plotted as streams imposed on the magnitude of the
local current in Fig. 5.

We find that the current bends around the obstacle without any further alterations see the vector field in Fig. 8.
Consequential it is obvious that the divergence vanishes as it should. Another interesting question arises from the
bending of the current: a locally bending current creates, due to Maxwell’s relations a local magnetic, which is
proportional to r ⇥ j. If we calculate the curling of the configurations above, we find a rather strongly patterned
configuration as depicted in Fig. 6

5

FIG. 6. The curling strength of the local current field for a the case of the four di↵erent arithmetic averages 2 < kF >= kL
F +kR

F .
Note that the higher kF states become significantly more curly, both in magnitude as in variability.

III. OBSERVABLES: MAGNETIC FIELD ETC.

Any current pattern is followed by a corresponding magnetic field, which is given by Biot-Savart’s law (in SI):

B(r) =
µ0

4⇡
r⇥

ˆ
d3r0

I(r0)

|r� r0|
(7)

The current density j used above, has the additional units e~/(2me) = µb, which is the Bohr magneton. Furthermore,
we consider a density, whereas Biot-Savart’s law relates current. For now, we will simply treat the magnetic Field as
a line density denoting the magnetic field per unit element along the 2d cross section. This magnetic density b, then
reads (see Sec. D 1):

bz(r?, rz)

µ0
=

ˆ
d2r0Krz (r? � r0)r⇥ j(r0) (8)

Using the representation from Eq. (C7), we find that the curl of the current can be expressed as:

r⇥j(r0) = µb
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For simplicity, we will consider the linear response regime, where we rewrite
´1
0 dk nL

k�nR
k

2 f(k) = [F (k)]
kL
F

kR
F

=

F (kL
F )�F (kR

F )
kL
F�kR

F
(kLF � kRF ) ⇡ f(kF )kF↵ (Using k±F = ~

p
2mEF (1± ↵) with ↵ = V/EF ). Furthermore, we will rescale the

remaining expression to measure all distances in units of kF (dimensionless coordinates have read: x), hence we read:
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The pre-factor k4F arises from two contributions: the second derivative (curl on current) generates k2F , whereas the
integral measure and the delta function replacement generates an additional k2F↵. In the latter expression, one kF
serves to have ↵ dimensionless, whereas the other one is a consequence of the polar coordinates, and states that the
angle dependent boundary condition a↵ects kF number of states (circumference is ⇠ kF ). We finally read:
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where we used that 4⇡Krz (r? � r0) = kF /
p

r2z + r2? + r02 � 2r?r
0 cos(✓ � ✓0). This last expression is dimensionless

and needs to be estimated. From Appendix D 1 we find that the integral over the angle can be performed analyt-
ically, if we shift the integration angle to depend on � = ✓0 � ✓. As a consequence, the integral kernel resembles

curl(j)≠ 0:  Quantum effect!
Non-eq Friedel oscillations
Analyt. description of non-eq steady state! 
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I. IN BRIEF

The system we aim to describe, is set up like a Landau-Büttiger ballistic transport setup [1]. We have a left
and a right thermal reservoir, which is considered to be infinite and interacting. In between, we have a ballistic,
non-interacting region through which transport takes place, see Fig. 1.

In contrast to the conventional Landau-Büttiger scenario we ignore for now the aspects of transmittance, and
focus instead on the non-equilibrium interference pattern emerging around obstacles in the transport region. Since
the reservoirs are interacting and infinite, a steady state forms in the sense that the boundary conditions imposed
on the non-interacting transport channel are time independent. Thus the notion of a non-equilibrium steady state
interference pattern is well defined.

FIG. 1. Schematic illustration of the considered setup.

We will first solve the corresponding Schrödinger equation and find a suitable wave-function basis to express possible
solutions before we construct the many electron states and formulate the non-equilibrium boundary condition. We
will then continue to study density and current patterns as well as emerging magnetic fields. For convenience we will
for the most part stick to natural units and even chose the mass of free particles to be 1/2 such that E = k2.

II. MODEL

The system we have to solve, is the free Hamiltonian with an infinite strong radial potential at the origin V (|r|) =
limV0!1 V0✓(R� r). We read:

Ĥ = �r
2 + V (|r|). (1)

Since the potential has radial symmetry, we will consider the Schrödinger equation in polar coordinates, which can
be found in App. A.

Next steps:
II. Add interactions (Hartree-Fock + beyond)
III. Analyze instabilities → Reynolds criterion?
IV. Relate to hydrodynamics: 

Quantum traces, quantum turbulence?
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My activities & approach

● Micro-plasticity in strongly disordered systems

● Bulk metallic glasses – local structural frustration

● Work hardened crystalline metals – dislocation networks

● Classical frustrated magnetism – spin ice physics

● 2D – artificial spin systems

● 3D – rare earth pyrochlores 

● Molecular dynamics

● Dislocation dynamics

● PEL exploration algorithms

● Kinetic and ensemble monte carlo

● Classical magnetization statistics & dynamics

● Statistical models of thermally activated plasticity

Interests

Methodology



Structural glasses – the amorphous solid

P. G. Debenedetti & F. H. Stillinger, 
Nature 410, 259 (2001).

Bulk metallic glasses – Alloys with atoms of different sizes – CuZr, CuNb, TiCuNi



Strucutral glass – the potential energy 
landscape

● low energy structural excitations?
● local structural state variables?
● their connectivity?

Collaborators: R. Maass, UIUC-MSE, USA, J. Loefler, ETHZ-MATL (SNF PhD: S. Jekal)

Model Binary Glass: 
32000 atoms 

Central questions to answer

Central 
concept

 tetrahedron  →  icosahedron

Locally minimizes bond 
energy frustration and 

maximizes atomic 
packing



Strucutral glass – localized structural 
excitations

S. Swayamjyoti, J.F. Löffler, and PMD, PRB 89, 
224201 (2014); Phys. Rev. B 93, 144202 (2016). 

PMD & R. Maass, JMR 32 (2017) 2668; Acta 
Mater 143 (2018) 338; Acta Mater 143 (2018) 205

PEL exploration algorithm

Direct molecular dynamics



Strucutral glass – icosahedral content

GPU MD 
simulation of ~50 
micro-seconds

PMD & R. Maass, in preparation (2018)

Icosahedral content directly 
controls energy and pressure 

(volume) relaxation



Example of PSI collaborations – ice physics

displacement-ice spin-ice

● finite configurational entropy
● no long range order, but a local 

constraint

 → pinch-points in diffuse scattering

Magnetic Coulomb Phase in the Spin Ice Ho
2
Ti

2
O

7

Fennell et al, Science 326 (5951), 415



Example of PSI collaborations – 2D ice physics

2D kagome 
system

2 in/1 out – 1 in/2 out

Spin-ice rule 

For modelling … treat each island as a point magnetic 
dipole

Collaborators: L. J. Heydermann, PSI/ETHZ-MATL (CROSS PhD: D. Schildknecht)
F. Nolting & A. Kleibert, PSI-SYN
M. Fiebig, ETHZ-MATL



Example of PSI collaborations – relaxation in 
spin ice I

A. Farhan, PMD, L. Anghinolfi, A. Kleibert, and L. J. Heyderman, Phys. Rev. B 96, 064409 (2017). 

2D kagome 
system

Kinetic monte 
carlo simulations



Future PSI collaboration – 3D spin and 
displacement ice physics

Multiple Coulomb phase in the 
fluoride pyrochlore CsNiCrF

6

Collaborators: T. Fennell - PSI-NUM

T. Fennell et al, submitted (2018)

Cs+

Ni2+

Cr3+

F-



Xavier Deupi (PSI) CMT presentation to LSM

Xavier Deupi: Biography

1973 Born in Barcelona.

1998 BSc in Organic Chemistry.

Institut Quimic de Sarria (Barcelona)

2003 PhD in Biochemistry and Molecular Biology.

Universitat Autonoma de Barcelona.

2003 Postdoc

Stanford University.

2005 Research Scientist (tenure track).

Universitat Autonoma de Barcelona.

2010 Scientific Officer at LBR/CMT.

Senior Scientist at LBR/CMT.2015
BIO/SLS



Xavier Deupi (PSI) CMT presentation to LSM

General interests and methodology 

Structure of proteins

G protein-coupled receptors

Structural modeling

Molecular dynamics simulations



bio.libretexts.org

Structure of proteins



bio.libretexts.org

Structure of proteins



www.khanacademy.org

Structure of proteins



Structure of proteins



Structure of proteins



Structure of proteins



Galandrin	et	al.	Trends	Pharmacol.	Sci.	28,	423–430	(2007)

Marinissen,	M.	J.	&	Gutkind,	J.	S.	Trends	Pharmacol.	Sci.	22,	368–376	(2001)

G protein-coupled receptors



Galandrin	et	al.	Trends	Pharmacol.	Sci.	28,	423–430	(2007)

Marinissen,	M.	J.	&	Gutkind,	J.	S.	Trends	Pharmacol.	Sci.	22,	368–376	(2001)

G protein-coupled receptors



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Tyr-Arg [bb-bb]
hook – TM3

b

Glu-Ser* [bb-bb]
Glu-Arg [sc-sc]

hook – helix 8

ctLeu-Lys [bb-sc]
hook – TM6

Arg-Lys [bb-bb]
helix 8 – TM6

β2AR – Gsα

R1313.50
Y391H5.23

hook – TM3 (DRY motif)

E392H5.24

R3288.46

hook – hx8

TM3
(DRY motif)

K2706.32
L394H5.26

TM6

hx8

(intracellular view)

hook - receptor

receptor - receptor

hook - receptor

hx8

TM3

hx8 – TM6

R3288.46

K2706.32

TM6

TM5

E392H5.24

S3298.47

hook – TM6

*equivalent to Gly-Asn 
in rhodopsin

Tyr-Arg [bb-bb]
hook – TM3

b

Glu-Ser* [bb-bb]
Glu-Arg [sc-sc]

hook – helix 8

ctLeu-Lys [bb-sc]
hook – TM6

Arg-Lys [bb-bb]
helix 8 – TM6

β2AR – Gsα

R1313.50
Y391H5.23

hook – TM3 (DRY motif)

E392H5.24

R3288.46

hook – hx8

TM3
(DRY motif)

K2706.32
L394H5.26

TM6

hx8

(intracellular view)

hook - receptor

receptor - receptor

hook - receptor

hx8

TM3

hx8 – TM6

R3288.46

K2706.32

TM6

TM5

E392H5.24

S3298.47

hook – TM6

*equivalent to Gly-Asn 
in rhodopsin

a rhodopsin – Go-mini

TM3

R1353.50
C351H5.23

hook – TM3 (DRY motif)

K3118.48

E2496.32

hx8 – TM6hook – hx8

K3118.48
Y354H5.26

G352H5.24

N3108.47 TM6

TM5

hook – TM3
Cys-Arg [bb/bb]

hook – helix 8
Gly-Asn [bb/bb]
ctTyr-Lys [bb/bb]

helix 8 – TM6
Lys-Glu [bb/bb]

TM3
(DRY motif)

TM6

hx8

hook - receptor

receptor - receptor

(intracellular view)

hx8

Tyr-Arg [bb-bb]
hook – TM3

b

Glu-Ser* [bb-bb]
Glu-Arg [sc-sc]

hook – helix 8

ctLeu-Lys [bb-sc]
hook – TM6

Arg-Lys [bb-bb]
helix 8 – TM6

β2AR – Gsα

R1313.50
Y391H5.23

hook – TM3 (DRY motif)

E392H5.24

R3288.46

hook – hx8

TM3
(DRY motif)

K2706.32
L394H5.26

TM6

hx8

(intracellular view)

hook - receptor

receptor - receptor

hook - receptor

hx8

TM3

hx8 – TM6

R3288.46

K2706.32

TM6

TM5

E392H5.24

S3298.47

hook – TM6

*equivalent to Gly-Asn 
in rhodopsinResearch interests: structure of protein complexes



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: tumor targetting drugs
Targeting Cancer Cells with Hybrid and Heterovalent Ligands at Controlled Distances
SNF Sinergia: ETH, BIO@PSI



Protocol Andreas Ritler 22.03.2017 

For Dr. Xavier Deupi 03/2017 22.03.2017 Page1  

Modelling of minigastrin derivatives with the CCK2R receptor 
 
 
Peptides that should be modelled as receptor-ligand complex (in the binding site)  

 
 

AR060 

 
(Beta-glutamic acid sequence) 

 
PP-F11N 

 
(attention: D-Glu stereochemistry) 

 
AR059 

 
(attention: D-Glu stereochemistry) 

 
 

AR058 

 
(attention: D-Glu stereochemistry) 

 
 

AR033 

 
 
  

Research interests: tumor targetting drugs



Protocol Andreas Ritler 22.03.2017 

For Dr. Xavier Deupi 03/2017 22.03.2017 Page1  

Modelling of minigastrin derivatives with the CCK2R receptor 
 
 
Peptides that should be modelled as receptor-ligand complex (in the binding site)  

 
 

AR060 

 
(Beta-glutamic acid sequence) 

 
PP-F11N 

 
(attention: D-Glu stereochemistry) 

 
AR059 

 
(attention: D-Glu stereochemistry) 

 
 

AR058 

 
(attention: D-Glu stereochemistry) 

 
 

AR033 

 
 
  

Research interests: tumor targetting drugs



Protocol Andreas Ritler 22.03.2017 

For Dr. Xavier Deupi 03/2017 22.03.2017 Page1  

Modelling of minigastrin derivatives with the CCK2R receptor 
 
 
Peptides that should be modelled as receptor-ligand complex (in the binding site)  

 
 

AR060 

 
(Beta-glutamic acid sequence) 

 
PP-F11N 

 
(attention: D-Glu stereochemistry) 

 
AR059 

 
(attention: D-Glu stereochemistry) 

 
 

AR058 

 
(attention: D-Glu stereochemistry) 

 
 

AR033 

 
 
  

Research interests: tumor targetting drugs



Protocol Andreas Ritler 22.03.2017 

For Dr. Xavier Deupi 03/2017 22.03.2017 Page1  

Modelling of minigastrin derivatives with the CCK2R receptor 
 
 
Peptides that should be modelled as receptor-ligand complex (in the binding site)  

 
 

AR060 

 
(Beta-glutamic acid sequence) 

 
PP-F11N 

 
(attention: D-Glu stereochemistry) 

 
AR059 

 
(attention: D-Glu stereochemistry) 

 
 

AR058 

 
(attention: D-Glu stereochemistry) 

 
 

AR033 

 
 
  

Research interests: tumor targetting drugs



Xavier Deupi (PSI) CMT presentation to LSM

Research interests: tumor targetting drugs



Xavier Deupi (PSI) CMT presentation to LSM

General interests and methodology 

Structure of proteins

G protein-coupled receptors

Structural modeling

Molecular dynamics simulations



Future new directions

The most important challenge facing CMT is to provide theoretical
expertise in the field of photonics in- and out- of thermodynamic
equilibrium:

I Quantum optics in the context of many-body physics (no in-house
expertise).

I Driven phases of quantum matter out of equilibrium
(complementary to Markus Müller).

I Ultrafast quantum dynamics (time-dependent DFT and DMFT are
two possible computational methods with no in-house expertise).

In the short term, this expertise cannot be found in house. It can
be found in Fribourg (P. Werner) and in IBM Zurich (I. Tavernelli). It
could be harnessed through the NCCR QUBE if selected by SNF.
The expertise of Bernard Delley (DFT) was not replaced within
CMT. Many requests for theoretical support at PSI require DFT.
Can we find this expertise at LSM\CMT (say with Matthias
Krack)?
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