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We propose a new experiment, Mu-MASS, aiming for a 1000-fold improvement in the determination
of the 1S-2S transition frequency of Muonium (M), the positive-muon/electron bound state. This
substantial improvement beyond the current state-of-the-art relies on the novel cryogenic M converters
and confinement techniques we developed, on the new excitation and detection schemes which we
implemented for positronium spectroscopy and the tremendous advances in generation of UV radiation.
This will provide the best determination of the muon mass at a level of 1 ppb. Moreover, combined
with the results of the ongoing hyperfine splitting measurement (MUSEUM) at the Japan Proton
Accelerator Research Complex (JPARC) this will provide one of the most sensitive test of bound state
Quantum ElectroDynamics (QED) with a relative precision of 1⇥ 10�9.

Interesting anomalies in the muon sector have accumulated: notably the famous anomalous muon
magnetic moment (g-2) and the muonic hydrogen Lamb shift measurement which prompted the so-
called proton charge radius puzzle. These tantalizing results triggered vibrant activity on both experi-
mental and theoretical sides. Di↵erent explanations have been put forward including exciting solutions
invoking New Physics beyond the Standard Model. Mu-MASS could contribute to clarifying the origin
of these anomalies by providing robust and reliable values of fundamental constants such as the muon
mass and a value of the Rydberg constant independent of finite size e↵ects.

The experiment is funded through an ERC consolidator grant (818053 -Mu-MASS), which allows
to form the core group of scientist focusing 100% on the experiment. In addition, the PSI Laboratory
for Muon Spin Spectroscopy (LMU) and Laboratory for Particle Physics (LPT) groups will collaborate
on the project providing their essential expertise on muon/muonium physics. The group of Colorado
State University (CSU) led by D. Yost will collaborate on the UV laser source. The grant agreement
is being signed and the project is foreseen to start in February 2019.
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Muonium 1S-2S: current status theory/experiment 
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 Meyer et al. PRL84, 1136 (2000)

Limited by knowledge of muon mass.  
QED calculations at 20 kHz  S. G. Karshenboim, Phys. Rep. 422, 1 (2005)

Reduced mass contribution:1.187 THz (4800 ppm)

Byproduct: 
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Mu-Mass: Goal and Output  
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Mu-MASS: Measure 1S-2S transition with Doppler free laser spectroscopy 
GOAL: improve by 3 orders of magnitude (10 kHz, 4 ppt) 

OUTPUT 
→ Muon mass @ 1 ppb 
→ Ratio of qe/q𝜇 @ 1 ppt 
→ Search for New Physics 
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Mu-MASS: Measure 1S-2S transition with Doppler free laser spectroscopy 
GOAL: improve by 3 orders of magnitude (10 kHz, 4 ppt) 
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OUTPUT 
→ Muon mass @ 1 ppb 
→ Ratio of qe/q𝜇 @ 1 ppt 
→ Search for New Physics  
→ Test of bound state QED (1x10-9) 
→ Rydberg constant @ ppt level 
→ New determination of 𝛼 @ 1 ppm 
→ Input to muon g-2

Adapted from K. Jungmann,  
DPG 2017 (Mainz)
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Mu-MASS: methodology
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Mu-MASS: methodology
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Low energy muon (LEM) beam line at PSI 
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Porous silica targets: Positronium/Muonium formation 
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Positronium formation 
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Positronium results 
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muSR results for porous and bulk SiO2 
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Positron shielding technique (PST) 
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Positron shielding technique (PST) 

8



||Paolo Crivelli 29.1.2019

PST → vacuum yield 
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PST results 
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A.Antognini, P. Crivelli, T. Prokscha et al. PRL108,143401(2012)
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PST results 
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A.Antognini, P. Crivelli, T. Prokscha et al. PRL108,143401(2012)

Promising results of 
production of  colder Muonium 

source (see A. Soter talk)
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Muonium confinement 

11



||Paolo Crivelli 29.1.2019

Mu-MASS: Laser system
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Our collaborators 1.4 W@244nm  
https://arxiv.org/abs/1811.09874 
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Frequency reference
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972/976 nm MENLO 
FREQUENCY COMB 
@ETHZ

<100 kHz frequency stability over few hours  

Robust lock of laser frequency and  
 enhancement cavity   
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Positronium 1S→2S→20P excitation & detection via 
field ionisation in an MCP, arXiv 1809.07854 (2018)

Time of flight  
 spectra 20P  
  Ps atoms 

Line shape  
modelling 

Atoms 
velocity  

Transition  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 Correction of second order doppler shift (main systematic!)
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Mu-MASS: feasibility
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Low energy 𝜇+ beam

Muonium production

Muonium 2S excitation

Muonium 20P excitation

Muonium field ionisation 
𝜇+ detection 

Existing LEM beam line   

𝜀 = 20%@100 K 

>33 W circulating power @ 244 nm  

PRL108,143401(2012), PRA94,022716 (2016)

JINST 10, P10025 (2015) 

 Opt. Express 43, 1375 (2018)

365 nm multi-pass laser cavity
Opt. Express 22,13050 (2014)Synergy with A. Antognini,  ERC-2016-COG  

 Precursor experiment: Positronium  
1S-2S measurement Hyp. Int 233, 67 (2015)
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Previous results (RAL(1999)) 
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Current best result

Crivelli Part B1 Mu-MASS

6 Feasibility

To estimate the expected signal rate Monte-Carlo (MC) simulations, validated by the Ps spectroscopy
data collected by the PI and the previous M studies [28, 33, 47], of the atoms’ trajectories with numerical
integration of the Bloch equations including photo-ionization and the AC Stark e↵ect [48] show that the
expected line width for a CW experiment is approaching the 145 kHz natural line width of the 1S-2S
transition in muonium. The main source of broadening is due to the mean finite interaction time of
the atoms with the laser beam. The expected number of detected events and projected systematic and
statistical uncertainty for both phases are summarized below and compared with the RAL experiment.

RAL (1999) Mu-MASS Phase1 Mu-MASS Phase2
µ+ beam intensity 3500 ⇥ 50 Hz 5000 s�1 > 9000 s�1

µ+ beam energy 4 MeV 5 keV 5 keV
Temperature M atoms 300 K 100 K 100 K
Total number of 2S events 99 1900 (10 d) > 7000 (40 d)
Spectroscopy Pulsed laser CW (25 W) CW (50 W)
Experimental linewidth 20 MHz 750 kHz 300 kHz
Laser chirping 10 MHz 0 kHz 0 kHz
Residual Doppler shift uncert. 3.4 MHz 0 kHz 0 kHz
2nd-order Doppler shift uncert. 44 kHz 15 kHz 1 kHz (corrected)
Frequency calibration uncert. 0.8 MHz < 1 kHz < 1 kHz
Background events 2.8 events/day 1.6 events/day 1.6 events/day
Statistical uncertainty 9.1 MHz <100 kHz 10 kHz
Total uncertainty 9.8 MHz <100 kHz (linewidth/10) 10 kHz (linewidth/30)

7 Risk management

The risk associated with combining di↵erent components into one instrument is always a potential
problem in a large project. This will be mitigated by developing and testing the components separately,
and gradually combining them one-by-one with testing and obtaining publishable results at each stage. As
described in Sec.5, two phases are foreseen. In Phase 1 all readily available technology will be used. To limit
the risks, excitation and detection systems will be tested with H/D beams before the beamtime at the LEM.
In Phase 2, a longer beamtime will be requested to collect enough statistics and correct for the systematic
e↵ects. The knowledge acquired in Phase 1 will serve for optimization of the di↵erent components and the
measurement method in order to maximize the signal rate minizing the risk. To reduce this even further
di↵erent strategies will be pursued. The signal rate will be increased by upgrading the laser system, by
improving the M source and by employing a higher luminosity µ+ beam (a close collaboration with the
PSI muon group and the ETHZ group of Prof. K. Kirch is already ongoing [41]).

8 Work plan and resources

This grant application of 2’000’000 e over 5 years covers the salary of 3 PostDocs (PD) (3+2+3 years)
and 2 PhD students (3+3 years) and all the funding required to build and run the experiment. It allows
creating a strong group to perform the proposed measurements and to gather the collaborators that o↵ered
their expertise to participate in the experiment.

Milestones 1 year 2 year 3 year 4 year 5 year
Lasers development [PI, PD1,YOST]

Detectors development [PI, PD2, LEM]

Tests with H/D beam [PI, PD1,2, PhD1]

Beamtime at LEM (+setup) [PI, PD1,2, PhD1,2,LEM]

Phase1 data analysis and publications [PI, PD1,2,3 PhD1,2]

Laser upgrade [PI, PD1, PhD2, YOST]

Phase 2 beam time (+ setup) [PI, PD1,3, PhD2, LEM, PSI, KIRCH]

Data analysis and publications [PI, PD3, PhD2]

New M targets and beamline [PI, PD1,2,3, PhD1,2, PSI, KIRCH]
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Mu-MASS vs RAL(1999) - New essential developments 
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Continuous wave laser spectroscopy vs pulsed

Improved muonium source (higher yield + lower temperature)

Crivelli Part B1 Mu-MASS

6 Feasibility

To estimate the expected signal rate Monte-Carlo (MC) simulations, validated by the Ps spectroscopy
data collected by the PI and the previous M studies [28, 33, 47], of the atoms’ trajectories with numerical
integration of the Bloch equations including photo-ionization and the AC Stark e↵ect [48] show that the
expected line width for a CW experiment is approaching the 145 kHz natural line width of the 1S-2S
transition in muonium. The main source of broadening is due to the mean finite interaction time of
the atoms with the laser beam. The expected number of detected events and projected systematic and
statistical uncertainty for both phases are summarized below and compared with the RAL experiment.

RAL (1999) Mu-MASS Phase1 Mu-MASS Phase2
µ+ beam intensity 3500 ⇥ 50 Hz 5000 s�1 > 9000 s�1

µ+ beam energy 4 MeV 5 keV 5 keV
Temperature M atoms 300 K 100 K 100 K
Total number of 2S events 99 1900 (10 d) > 7000 (40 d)
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Experimental linewidth 20 MHz 750 kHz 300 kHz
Laser chirping 10 MHz 0 kHz 0 kHz
Residual Doppler shift uncert. 3.4 MHz 0 kHz 0 kHz
2nd-order Doppler shift uncert. 44 kHz 15 kHz 1 kHz (corrected)
Frequency calibration uncert. 0.8 MHz < 1 kHz < 1 kHz
Background events 2.8 events/day 1.6 events/day 1.6 events/day
Statistical uncertainty 9.1 MHz <100 kHz 10 kHz
Total uncertainty 9.8 MHz <100 kHz (linewidth/10) 10 kHz (linewidth/30)

7 Risk management

The risk associated with combining di↵erent components into one instrument is always a potential
problem in a large project. This will be mitigated by developing and testing the components separately,
and gradually combining them one-by-one with testing and obtaining publishable results at each stage. As
described in Sec.5, two phases are foreseen. In Phase 1 all readily available technology will be used. To limit
the risks, excitation and detection systems will be tested with H/D beams before the beamtime at the LEM.
In Phase 2, a longer beamtime will be requested to collect enough statistics and correct for the systematic
e↵ects. The knowledge acquired in Phase 1 will serve for optimization of the di↵erent components and the
measurement method in order to maximize the signal rate minizing the risk. To reduce this even further
di↵erent strategies will be pursued. The signal rate will be increased by upgrading the laser system, by
improving the M source and by employing a higher luminosity µ+ beam (a close collaboration with the
PSI muon group and the ETHZ group of Prof. K. Kirch is already ongoing [41]).

8 Work plan and resources

This grant application of 2’000’000 e over 5 years covers the salary of 3 PostDocs (PD) (3+2+3 years)
and 2 PhD students (3+3 years) and all the funding required to build and run the experiment. It allows
creating a strong group to perform the proposed measurements and to gather the collaborators that o↵ered
their expertise to participate in the experiment.

Milestones 1 year 2 year 3 year 4 year 5 year
Lasers development [PI, PD1,YOST]

Detectors development [PI, PD2, LEM]

Tests with H/D beam [PI, PD1,2, PhD1]

Beamtime at LEM (+setup) [PI, PD1,2, PhD1,2,LEM]

Phase1 data analysis and publications [PI, PD1,2,3 PhD1,2]

Laser upgrade [PI, PD1, PhD2, YOST]

Phase 2 beam time (+ setup) [PI, PD1,3, PhD2, LEM, PSI, KIRCH]

Data analysis and publications [PI, PD3, PhD2]

New M targets and beamline [PI, PD1,2,3, PhD1,2, PSI, KIRCH]
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Mu-MASS vs RAL(1999) - Line-width 
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Phase 1: Line-width 20 smaller Phase 2: Line-width 100 smaller

Crivelli Part B1 Mu-MASS

6 Feasibility

To estimate the expected signal rate Monte-Carlo (MC) simulations, validated by the Ps spectroscopy
data collected by the PI and the previous M studies [28, 33, 47], of the atoms’ trajectories with numerical
integration of the Bloch equations including photo-ionization and the AC Stark e↵ect [48] show that the
expected line width for a CW experiment is approaching the 145 kHz natural line width of the 1S-2S
transition in muonium. The main source of broadening is due to the mean finite interaction time of
the atoms with the laser beam. The expected number of detected events and projected systematic and
statistical uncertainty for both phases are summarized below and compared with the RAL experiment.

RAL (1999) Mu-MASS Phase1 Mu-MASS Phase2
µ+ beam intensity 3500 ⇥ 50 Hz 5000 s�1 > 9000 s�1

µ+ beam energy 4 MeV 5 keV 5 keV
Temperature M atoms 300 K 100 K 100 K
Total number of 2S events 99 1900 (10 d) > 7000 (40 d)
Spectroscopy Pulsed laser CW (25 W) CW (50 W)
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7 Risk management

The risk associated with combining di↵erent components into one instrument is always a potential
problem in a large project. This will be mitigated by developing and testing the components separately,
and gradually combining them one-by-one with testing and obtaining publishable results at each stage. As
described in Sec.5, two phases are foreseen. In Phase 1 all readily available technology will be used. To limit
the risks, excitation and detection systems will be tested with H/D beams before the beamtime at the LEM.
In Phase 2, a longer beamtime will be requested to collect enough statistics and correct for the systematic
e↵ects. The knowledge acquired in Phase 1 will serve for optimization of the di↵erent components and the
measurement method in order to maximize the signal rate minizing the risk. To reduce this even further
di↵erent strategies will be pursued. The signal rate will be increased by upgrading the laser system, by
improving the M source and by employing a higher luminosity µ+ beam (a close collaboration with the
PSI muon group and the ETHZ group of Prof. K. Kirch is already ongoing [41]).

8 Work plan and resources

This grant application of 2’000’000 e over 5 years covers the salary of 3 PostDocs (PD) (3+2+3 years)
and 2 PhD students (3+3 years) and all the funding required to build and run the experiment. It allows
creating a strong group to perform the proposed measurements and to gather the collaborators that o↵ered
their expertise to participate in the experiment.
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Data analysis and publications [PI, PD3, PhD2]
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Mu-MASS vs RAL(1999) - Systematic effects 
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Systematic related to pulsed  
excitation eliminated

Phase 1: no systematic 
effect to correct

Phase 2: systematic  
effects to be corrected

Crivelli Part B1 Mu-MASS

6 Feasibility

To estimate the expected signal rate Monte-Carlo (MC) simulations, validated by the Ps spectroscopy
data collected by the PI and the previous M studies [28, 33, 47], of the atoms’ trajectories with numerical
integration of the Bloch equations including photo-ionization and the AC Stark e↵ect [48] show that the
expected line width for a CW experiment is approaching the 145 kHz natural line width of the 1S-2S
transition in muonium. The main source of broadening is due to the mean finite interaction time of
the atoms with the laser beam. The expected number of detected events and projected systematic and
statistical uncertainty for both phases are summarized below and compared with the RAL experiment.

RAL (1999) Mu-MASS Phase1 Mu-MASS Phase2
µ+ beam intensity 3500 ⇥ 50 Hz 5000 s�1 > 9000 s�1
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Laser chirping 10 MHz 0 kHz 0 kHz
Residual Doppler shift uncert. 3.4 MHz 0 kHz 0 kHz
2nd-order Doppler shift uncert. 44 kHz 15 kHz 1 kHz (corrected)
Frequency calibration uncert. 0.8 MHz < 1 kHz < 1 kHz
Background events 2.8 events/day 1.6 events/day 1.6 events/day
Statistical uncertainty 9.1 MHz <100 kHz 10 kHz
Total uncertainty 9.8 MHz <100 kHz (linewidth/10) 10 kHz (linewidth/30)

7 Risk management

The risk associated with combining di↵erent components into one instrument is always a potential
problem in a large project. This will be mitigated by developing and testing the components separately,
and gradually combining them one-by-one with testing and obtaining publishable results at each stage. As
described in Sec.5, two phases are foreseen. In Phase 1 all readily available technology will be used. To limit
the risks, excitation and detection systems will be tested with H/D beams before the beamtime at the LEM.
In Phase 2, a longer beamtime will be requested to collect enough statistics and correct for the systematic
e↵ects. The knowledge acquired in Phase 1 will serve for optimization of the di↵erent components and the
measurement method in order to maximize the signal rate minizing the risk. To reduce this even further
di↵erent strategies will be pursued. The signal rate will be increased by upgrading the laser system, by
improving the M source and by employing a higher luminosity µ+ beam (a close collaboration with the
PSI muon group and the ETHZ group of Prof. K. Kirch is already ongoing [41]).

8 Work plan and resources

This grant application of 2’000’000 e over 5 years covers the salary of 3 PostDocs (PD) (3+2+3 years)
and 2 PhD students (3+3 years) and all the funding required to build and run the experiment. It allows
creating a strong group to perform the proposed measurements and to gather the collaborators that o↵ered
their expertise to participate in the experiment.

Milestones 1 year 2 year 3 year 4 year 5 year
Lasers development [PI, PD1,YOST]
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Time schedule and Milestones 

17

Crivelli et al. BV 50 - Proposal Mu-MASS

Milestones 2019 2020 2021 2022 2023
Lasers development [ETHZ,CSU]

Detectors development [ETHZ,LMU,LTP]

Tests with H/D beam [ETHZ]

Beamtime at LEM (+setup) [ETHZ,LMU,LTP]

Phase1 data analysis and publications [ALL]

Laser upgrade [ETHZ,CSU]

Phase 2 beam time (+ setup) [ALL]

Data analysis and publications [ALL]

New M targets and beamline [ETHZ, LMU, LTP]

Table 3: Time schedule of the project. The colours of the bars correspond to: green = developments, grey
= commissioning, black = data taking and cyan = analysis and dissemination.
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We propose a new experiment, Mu-MASS, aiming for a 1000-fold improvement in the determination
of the 1S-2S transition frequency of Muonium (M), the positive-muon/electron bound state. This
substantial improvement beyond the current state-of-the-art relies on the novel cryogenic M converters
and confinement techniques we developed, on the new excitation and detection schemes which we
implemented for positronium spectroscopy and the tremendous advances in generation of UV radiation.
This will provide the best determination of the muon mass at a level of 1 ppb. Moreover, combined
with the results of the ongoing hyperfine splitting measurement (MUSEUM) at the Japan Proton
Accelerator Research Complex (JPARC) this will provide one of the most sensitive test of bound state
Quantum ElectroDynamics (QED) with a relative precision of 1⇥ 10�9.

Interesting anomalies in the muon sector have accumulated: notably the famous anomalous muon
magnetic moment (g-2) and the muonic hydrogen Lamb shift measurement which prompted the so-
called proton charge radius puzzle. These tantalizing results triggered vibrant activity on both experi-
mental and theoretical sides. Di↵erent explanations have been put forward including exciting solutions
invoking New Physics beyond the Standard Model. Mu-MASS could contribute to clarifying the origin
of these anomalies by providing robust and reliable values of fundamental constants such as the muon
mass and a value of the Rydberg constant independent of finite size e↵ects.

The experiment is funded through an ERC consolidator grant (818053 -Mu-MASS), which allows
to form the core group of scientist focusing 100% on the experiment. In addition, the PSI Laboratory
for Muon Spin Spectroscopy (LMU) and Laboratory for Particle Physics (LPT) groups will collaborate
on the project providing their essential expertise on muon/muonium physics. The group of Colorado
State University (CSU) led by D. Yost will collaborate on the UV laser source. The grant agreement
is being signed and the project is foreseen to start in February 2019.

1



||Paolo Crivelli 25.09.2018

Core research team 
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Phase 1

Crivelli Part B1 Mu-MASS

1 year 2 year 3 year 4 year 5 year
PostDoc 1

Laser developments
Beam time (H/D beams + muons phase 1)
Laser (244 nm) upgrade
PostDoc 2

Detectors development and DAQ
Beam time (H/D beams + muons phase 1)
Data analysis
PostDoc 3

Laser (244 nm) upgrade !50 W
Phase 1 Beam time + data analysis
Phase 2 Beam time + data analysis
PhD 1

LEM optics/tagging/tests with p
Beam time (H/D beams + muons phase 1)
Data analysis/Writing thesis
PhD 2

Phase 1 Beam time
Optimization/Phase 2 Beam time
Data analysis /Writing thesis

1

Phase 2

818053 - Mu-MASS
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Summary 

▪ Mu-MASS aims at improving 3 orders of magnitude on 
our current knowledge of the 1S-2S of Muonium 

▪ Feasibility builds on expertise acquired during the last  
decade: Ps CW laser spectroscopy, cryogenic muonium 
production, high precision detectors development. 

▪ Project funded by European Research Council: starting 
from February 2019.  

▪ Phase 1: at LEM (2x2 weeks) end of 2020/2021. 
▪ In parallel: development of new Mu cold targets 
▪ Phase 2: Experiment would greatly profit of muCool 

beamline (see a A. Antognini talk) 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Thank you for attention! I will be happy to answer your questions. 
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