
Building a Data System for LCLS-II
Jana Thayer, LCLS Data Systems

Workshop on New Concepts in Ultrafast Data Acquisition

April 10th-11th 2018, PSI

Summary of key requirements and characteristics

1. Fast feedback is essential (seconds / minute timescale) to increase success rate of experiments

2. 24/7 availability

3. Throughput between storage and processing is critical

4. Storage represents significant fraction of the overall system, both in cost and complexity

5. Speed and flexibility of the development cycle is critical

2

Phase I Phase II Phase III

Parameter LCLS-I

Present

LCLS-II comm.

2020

LCLS-II ops

2024

LCLS-II HE

2028

Ave throughput 1-2.5 GB/s 2.5-25 GB/s 5-200 GB/s 1296

 GB/s

Peak throughput 5 GB/s 200 GB/s 200 GB/s 1.3 TB/s

Data cache storage 50 TB/hall 1 PB 3 PB 10 PB

Peak Processing

(offline)

50 TFlops 1 PFlops

5 PFlops

>130 PFlops

Disk storage 6 PB 16 PB 36 PB >100 PB

Today’s LCLS Data System

3

Onsite Offsite - (NERSC)

Onsite - SLAC

Event Builder

Online

Monitoring

Up to 5 GB/s Fast

feedback

storage

Up to 5 GB/s

Detector

Offline

storage
Offline

Processing

Offline

storage
Exascale

HPC

Fast

Feedback

~ 1 s ~ 1 min

Today: no inline data reduction needed but fast feedback and data visualization

found to be essential to efficiently execute experiments

Today: 120 Hz acquisition, throughput up to 5 GB/s; fast feedback at 1 second and 1 minute timescales is

crucial; majority of experiments are analyzed on SLAC offline processing farm

Data reduction mitigates storage, networking, and processing requirements

LCLS-II Data System

Megapixel

detector

X-ray diffraction

image

Intensity map from

multiple pulses

Interpretation of system

structure / dynamics

Onsite

Offsite - HIghest Demand Experiments

(NERSC, LCF)

Onsite - SLAC (standard experiments)

Data Reduction

Pipeline

Online

Monitoring

Up to 1 TB/s Fast

feedback

storage

100 GB/s

Detector

Offline

storage
Offline

Processing

Offline

storage
Exascale

HPC

Fast

Feedback

~ 1 s
~minute

s

>10x reduction

New for LCLS-II

Improved for LCLS-II

Three Different Levels of Data Processing

Data Reduction Pipeline (DRP):

● Purpose: lossless or lossy reduction of data volume (~10x) before data reaches disk

● Multi-threaded C++ running on ~40 nodes (written by the core LCLS team)

● Small number of algorithms (~20) supports most experiments

Fast FeedBack (FFB):

● Purpose: near real-time feedback to allow experiments to make operational decisions

● Runs on disk-based data (reserved for running experiment) with latency of ~1 minute

with parallelized-python code (top level written by users) for quick development

Offline:

● Purpose: obtain final physics results

● Mostly parallelized-python code (top level written by users)

5

LCLS-II Data Flow

6

DAQ Readout

Nodes

PGP

PGP

PGP

PGP

PGP

PGP

PGP

BLD

IB EDR

Control

PGP

DTI

Timing

 (input)

DRP

(compressor)

Nodes

Online

Monitoring

Nodes

PM

Fast feedback

(1 PB)

DAQ

100 GB/s - 1 TB/s

Data Reduction Pipeline

(x10)

Fast Feedback

Analysis Farm

IB EDR Ethernet

Offline 10-

100 PB

Offline Analysis

Farm

NVRAM Lustre

10 GB/s - 1 Tb/s

Hutch Experimental Hall HPC (SLAC, NERSC, LCF)

Ethernet

DAQ and Data

Reduction Pipeline

(DRP)

DAQ: LCLS-II Timing and Fast Control Distribution

8

LCLS-II Timing system delivers frames of fast control data over fiber optics:

Frame rate: 929kHz

Beam synchronous clock: 186MHz

Frame contents: PulseID, beam present, timing markers, control words

sequenced by experiment request.

Timing Master appends commands to frame data:

Trigger decisions: exposure and readout control

Commands: configuration control and event handling

Distribution will fanout command data and fan-in

feedback information.

Sensors can now participate in controlled deadtime.

Enables Deadtime and Fast Veto

9

Four models of sensor integration:

1) Commercial-I

Separation of trigger, data, and

timestamp path (CPU required)

2) Commercial-II

Separation of trigger, data, and

timestamp path (CPU not req’d)

3) Custom-I

Paths joined by an interface card

4) Custom-II

Sensor receives timing directly

Design capable of integrating wide variety of sensor readout

Readout Node DRP Node

DRP Node

DRP Node

DRP Node

PGP

PGP

PGP

PGP

TTL

TTL

Timestamp

TTL Generator

TTL Generator

Detector-Timing Integrator

Detector-Timing Integrator

1

2

3

4

Timing

Master

DAQ: LCLS-II Timing and Sensor Readout

Attaching a timestamp to the data at the source (detector) offers a powerful

advantage - the ability to online event build and monitor data

Data Reduction Pipeline (DRP) Design Drivers

Data Reduction Pipeline: reduce data volume before writing to disk

● Reduce data in a way that does not affect the science result

○ Reduce rate through feature extraction, compression, or event veto using

flexible and configurable toolkit of data reduction techniques

○ Match the data reduction algorithm to the experimental technique

■ 100+ experiments per year, 3 - 4 experiments per 5 day period

■ 20+ experimental techniques identified, computing needs quantified

● Keep up with data acquisition rate

● Most experiments today already reduce their data volume offline: move this

feature extraction and data reduction online

Throughput, not computing, drives the size of the data reduction pipeline

10

All current experiments reduce data volumes → Now do it in realtime

Data

Reduction

Pipeline

DRP: Algorithm toolkit

Went through all LCLS-II experiment types through 2026.

Identified ~10 data reduction categories:

● Triggering (software veto on entire event)
● Accumulating

○ Includes angular integration averaging
● Binning
● Lossless compression
● Lossy compression (SZ algorithm from ANL)
● ROI
● Zero-suppression (software and firmware)

○ Includes peak finding
● Timetool calculation (firmware)

Implementation is on CPU (no GPU for L2S-I) and some FPGA for special
cases like timetool and high speed digitizer.

DRP: Event Batching

● 1MHz event rates (interrupt rates) difficult on linux.
● Batch events in groups of definable size.
● Major examples:

○ New PGP Card interrupt generated only when it goes from empty to
non-empty

○ Re-entrant Queues in DRP only take a semaphore when they go
empty/full

○ Trigger/monitoring event-builder
○ Persistent storage: reading/writing data

13

DRP: Parallelization

MPI

Visualization

Results
Event CALIB ALG

 1 core

Event CALIB ALG

 1 core

Event CALIB ALG

 1 core

DAQ

files (or

shared

memory)

Each core:

● event-builds one shot

● calibrates detector data

● runs science specific

algorithm on one event

“Perfectly parallel” pattern: applications can be scaled, limited only by data

distribution from filesystem or shared-memory (typically 20-100 cores)

DRP: Data Formats

● In-memory representation (streaming): Self-describing XTC
○ Event Builder and online analysis read data from shared memory
○ No serialization/deserialization required for transport
○ Self-describing data using fundamental types

● File Data Format: HDF5
○ Full SWMR (Single Writer Multiple Reader), available summer 2018:

■ Natural management of variable-length data
■ Batching efficient writes of small data
■ Potential file corruption on crash

○ User-complexity-saving wish-list:
■ When file is opened, it is not readable with SWMR for “a while”
■ User must manage meta-data refreshes to not compromise

performance. Increases complexity
■ Offline event-builder ideally done by HDF5 instead of user. Virtual

Dataset cannot tolerate dropped data (requires regular pattern).
■ Additional software is needed to do HDF5 real-time copying.

DRP: Lessons Learned

● In-memory data format: XTC looks best
● Language: pure C++ is the right answer for performance
● Event-batching: necessary everywhere to avoid per-event overhead
● Trigger/monitoring event-builder: infiniband RDMA via libfabric works
● Algorithms:

○ Supporting tools: beam-center finding very nice but not perfect
○ SZ compression helps, but could use extra compression. CPU

consumption is large: need a factor of 5 improvement in CPU usage.
○ Fast-thresholding veto looks good for crystallography/spi

● FPGA looks good for timetool and digitizer
● GPU looks not a big win vs CPU for common tasks
● Offline event-builder simplifies the DRP significantly

Online Monitoring

Online Monitoring - real time data visualization

Online Monitoring: display and analyze data on-the-fly

● Provides simple, real-time analysis of sampled data

○ Configured through a graphical user interface

○ No coding experience or preparation required

○ Analysis results used to

■ direct beamline operations, e.g. to optimize

alignment of beam on sample

■ tune DRP parameters

● Statistical subsample of data read from memory

○ Builds selectable subsets of the data flowing

through DRP

● Data and results are transient

17

Data visualization and simple analysis in < 1s crucial to beamline operations

Data Reduction Pipeline

Online Monitoring

Online Monitoring Design

Small compute farm for live analysis

● latency < 1 second, data read from shared memory

● whole events, but only a fraction of event rate (event built)

● software preselection of monitored events

● distributed processing, collected results

Programmable or graphical analysis

● share code base with offline analysis

● reuse standard tools; leverage python eco-system

● simple user python code

Feedback for automation

● hutch controls (bluesky)

● accelerator (EPICS PVaccess) 18

Based on LCLS experience / lessons

Fast Feedback

Fast Feedback - data quality monitoring

Fast Feedback (FFB): near real time feedback on science data quality

● Runs a simplified version of the full analysis: fast yet sophisticated enough to

provide event-level information used to drive experiment science

○ Dedicated processing reserved for the running experiment

○ Scripted interface gives user flexibility to express any analysis

○ Full statistics, access to all event sources

○ Data and results are persistent

● Users obtain a measure of scientific data quality as data are acquired

○ Results are needed on the timescale of minutes, driven by the time

needed to tweak and optimize experimental setup between data

acquisition runs

○ Validate performance of DRP

● Scientific steering requires near real time latency (~1 min)
20

FFB critical for measuring science data quality in near real time
Required to maximize experiment efficiency

Data Reduction

Pipeline
Fast

feedback

storage

Fast Feedback

Fast Feedback (FFB) System Overview

● Fast Feedback system consists of an SSD-based data cache and a

processing farm carved from the Offline processing farm.

● Data cache storage

○ Data Reduction Pipeline (DRP) writes event data to the FFB

○ Exclusively for the active experiments; lifetime of data ~12 hours

● Many files per run will be written, one file per DRP node

● Access to the FFB is a posix file system (Lustre) mounted on the clients

● Data movers will read the data from the FFB and transfer them to:

○ Offline storage

○ Remote location for real time analysis (e.g., NERSC)

● Data will be read by users while being written by DRP

○ Write: 1x DRP data rate

○ Read: 3-5x the DRP data rate (users and data transfer)

Data Management

Data Management System Responsibilities

● Provide storage resources with different requirements:
○ storage for fast feedback during data taking

○ analysis-storage for science data analysis

○ User storage supporting the analysis activities

○ tape storage for long term archival

● Automatic transfers of the science data files to the different storage within SLAC

or remote sites

● Tracking and management of the science data files: cataloging files,

distribution (local and remote), lifetime on disk

● Experiment and experiment metadata management

● Automatic data processing (workflows, automatic batch processing)

● Monitoring and log file aggregation

● The user facing site of the data management tools should look and behave the

same for LCLS-II and LCLS-I experiments

Data Management: Integration of Services

● The current system use a database to integrate all services

○ Changes to DB could affect many services

○ Lots of polling the DB for new entries or updates

○ Extending requires new tables or extending tables

message bus

data mover

run done,

file done

Run cntrl

new

run

start new run

quality process

run done

new

file

new

file

Data mover

monitor alerts

new

file

database

api

● Switch to an service/messaging architecture

○ There are many independent service. A service exposes an API that other

applications can use

(e.g.: get new run number).

○ Services can publish and

subscribe to messages

○ Loose coupling of services

○ Adding new services is easy

Offline

26

26

Strategy: Dedicated, local offline system complemented by DOE

High End Computing (HEC) Facilities
LCLS-II will require:

● Dedicated, local capabilities

○ Data Reduction Pipeline: Data compression, feature extraction, real time analysis

○ Science Data Facility: Storage and analysis for standard experiments, fast feedback analysis for all

experiments

● Access to HEC Facilities for highest demand experiments (exascale) allows users to stream science data

on-the-fly from LCLS beamlines to HEC vis ESnet; data management handled transparently

TITAN

at Oak

Ridge

Summary

● LCLS-II represents a significant data challenge in data throughput,

storage, network, and processing

● Data Reduction Pipeline brings data throughput and storage needs to a

manageable level

● LCLS-II Data System provides analysis and visualization tools with

latencies that allow for direct, real-time tuning of the experiment as well as

near real-time assessment of the scientific data quality

● Algorithms that run in the Data Reduction Pipeline and Fast Feedback

layer for 20+ experimental techniques have been identified and their

performance quantified

27

The LCLS-II Data System is scalable and flexible and addresses LCLS facility and
user requirements

Backup Slides

LCLS Data Flow - Today

29

1 - 5 GB/s

120 Hz

1 - 5 GB/s

1 - 10 TB per 12 hour shift

1 - 50 TB per experiment

2.5 PB/year

DAQ Readout

Nodes

BLD

PGP

Timing

 (input)
PM

Control

IB

EDR

Event Builder

Nodes

Online Monitoring

Farm

SSD

IB

EDR

Fast Feedback

Analysis Farm

DTNs
Ethernet

10 Gb/s
Ethernet

10 Gb/s

Offline Storage

Fast Feedback

Offline Analysis

Farm

Hutch Experimental Hall SLAC Bldg 50

50 TB 6 PB

DAQ

Fast Feedback

Offline

DRP: Challenging Algorithms

● XPCS (X-ray Photon Correlation Spectroscopy)
○ Every event is a hit, photons are (often) dense
○ Either lossless compression, SZ compression or only saving

speckles
○ Need to enumerate various cases more carefully (hard/soft x-ray,

detector distance, bragg-spot/diffuse…)
● FXS (Fluctuation X-Ray Scattering: high concentration limit of SPI)

○ With good detector corrections and beam-center knowledge, believe
we can compute angular correlations and sum resulting images

○ Working with CAMERA on this
● TES (Transition Edge Sensor) Detector

○ cross talk correction is computationally intensive, may need to be
done in firmware, but not clear space is available in FPGA

○ event time-overlap complicates separation of data into events
● SFX (Serial Femtosecond Crystallography) in the unlikely multi-hit case

Data reduction mitigates storage, networking, and processing requirements

LCLS-II Data System Architecture:

Single Particle Imaging Example

Multi-

megapixel

detector

Coherent

scattering

image

Interpretation of

system structure /

dynamics

Data Reduction

• Remove”no hits”

• >10x reduction

3 TFlops

16 TFlops

1 TB/s 100 GB/s

Intensity map

from multiple

pulses

60 GB/s 6 GB/s

8 kHz in 2024 (4 MP)

40 kHz in 2027 (16 MP) Data Analysis

• Orient patterns

• Average

• 3D intensity map

• Reconstruction

270 PFlops

1340 PFlops

Experiment

Description

• Individual particles are injected into

the focused LCLS pulses

• Scattering patterns are collected on

a pulse-by-pulse basis

• Particle concentration dictates “hit”

rate

32

LCLS-II and ATLAS: Similar but very different

LCLS-II

2022

LCLS-II

2026+

ATLAS Today ATLAS 2026+

Wanted fraction of collisions 0.01 to 1.0 0.01 to 1.0

< 10-6 < 10-5

Typical experiment duration (same

data-taking conditions)

3 days 3 days 3 years 3 years

24x7 availability of offline computing Essential Essential Desirable Desirable

Required turnround for data-quality

checks

Seconds to

minutes

Seconds to

minutes

Hours to days Hours to days

Raw digital data rate 200 GB/s 300+ GB/s 160 GB/s 1,000 GB/s

Zero-and-Junk-suppressed rate 10 GB/s 30+ GB/s 1.5 GB/s 20 GB/s

Storage need dominated by Mainly raw data Mainly simulated and derived data

Role of Simulation Growing in science analysis

Growing in experiment design

Vital in physics analysis

Vital in experiment design

Analysis, Simulation and Workflow

Software development community

Individuals (in the past)

→ Organized effort

~100 organized collaborators

(mainly research physicists)

LCLS-II data volume similar to ATLAS

Design Drivers: Self-Describing In-memory data format

Format World Standard Performant

Access from

C++/Python

Corresponding

Robust File

Format

No

serialization,

deserialization

for transport

Well supported

EPICS ✔ ✔ ✘ ✘ ✔

Apache Arrow ✔ ✔ ✘ ✔ ✔

Protobufs ✔ ✔ ✘ ✘ ✔

Flatbufs ✔ ✘ ✘ ✔ ✘ (python)

XTC ✘ ✔ ✔ ✔ ✔

DRP: Parallelization

● Hand out fseek-offsets to different cores
● Used this pattern to run on 30,000 cores at NERSC using MPI in 2017
● Also supporting Stanford “Legion” parallelization, which is expected to

behave better than MPI at the ExaScale (e.g. fault tolerance, startup time,
efficiency, GPU usage)

● Some extra overhead to support both parallelization schemes

Small-ish change (for performance):
● Current model: each core fetches “small data” to decide whether or not

to fetch large data using fseek-offsets
● Future model: master core fetches all small data for improved efficiency.

Filters, then distributes fseek-offsets of interesting large-data events to
slave cores.

● Requires interface change for separate “filtering” process

Design Drivers: Supporting Tools

● Beam center finding
● Detector calibration

○ Psana detector corrections:
■ Pedestals
■ Bad pixel masks
■ Common-mode noise corrections
■ Per-pixel gain

○ Have automated deployment of more corrections (e.g. common-mode parameters for
pnCCD)

○ Used in most LCLS analyses for many detectors (Epix, CsPad, Jungfrau, pnCCD) so
confident that our automated determination of these is robust.

○ Geometry is a significant problem: need more standardization of techniques, and
automated tools for computing multi-detector geometry

● Critical but not started yet: Graphical control of DRP using real-time graphical monitoring tools
(AMI)

Common FFB/Offline Example: Photon finding

36

X-ray Photon Correlation

Spectroscopy (XPCS)

X-ray Emission Spectroscopy

Reconstructing photon hits on
image detector is important
algorithm for many experiments

● 2 Threshold droplet algorithm

● 50 ms processing time for 1 MPix

Camera (including detector

corrections)

● 70 TFlops for 0.5 MPix @ 40kHz

Example of an algorithm that runs on Fast Feedback Layer

Data Management System Overview

Fast feedback

storage (FFB)

Offline

Storage

tape

archive

message bus

data mover

Experiments

automatic data

processing

Run-File cntrl

DAQ/DRP

File Mgr

database
database

Data mover can stream data

in real time to NERSC;

reads data file while it’s

being written

