

Andrej Babič :: Paul Scherrer Institut

Back-end and data storage: PSI

New concepts in ultra fast data acquisition, 10.4.2018

Acknowledgments Joint effort of multiple groups

- SLS Detector Group (led by Bernd Schmitt)
- High Level Tools and DAQ (led by Simon Ebner)
- High Performance Computing (led by Leonardo Sala)
- Multiple beamlines...
- Credits and contacts:

Heiner Billich <heiner.billich@psi.ch> Martin Brueckner <martin.brueckner@psi.ch> Simon Ebner <simon.ebner@psi.ch> Erik Froejdh <Erik.Froejdh@psi.ch> Andreas Menzel <andreas.menzel@psi.ch> Aldo Mozzanica <aldo.mozzanica@psi.ch> **Ezequiel Panepucci** <ezequiel.panepucci@psi.ch> Leonardo Sala <leonardo.sala@psi.ch> **Christian Schlepuetz** <christian.schlepuetz@psi.ch> Bernd Schmitt

 Dhanya Thattil <dhanya.thattil@psi.ch> Gemma Tinti <gemma.tinti@psi.ch> Andrej Babic <andrej.babic@psi.ch>

Stream components (1/5) Detector

Stream components (2/5) Backend

Stream components (3/5) Writer

Stream components (4/5) Storage

Stream components (5/5) Stream preview

Control components (1/2) Detector client

Control components (2/2) Detector integration API

User interaction

User interaction

• HTTP

- HTTP
- TCP/UDP

- HTTP
- TCP/UDP
- ZMQ

• No global state.

- No global state.
- Zero knowledge about the experiment.

- No global state.
- Zero knowledge about the experiment.
- Zero beamline specific logic.

• Base components same for all deployments.

- Base components same for all deployments.
- Beamline customizations in separate repositories.

- Base components same for all deployments.
- Beamline customizations in separate repositories.

- Base components same for all deployments.
- Beamline customizations in separate repositories.
- Customizations do not change the base components.

- Base components same for all deployments.
- Beamline customizations in separate repositories.
- Customizations do not change the base components.

- Backend customization
 - On the fly corrections.
 - Image manipulation.

- Base components same for all deployments.
- Beamline customizations in separate repositories.
- Customizations do not change the base components.

API server customization

- State machine.
- Configuration validation.

- Base components same for all deployments.
- Beamline customizations in separate repositories.
- Customizations do not change the base components.

- Base components same for all deployments.
- Beamline customizations in separate repositories.
- Customizations do not change the base components.

Deployment strategy (1/3) Anaconda

Deployment strategy (1/3) Anaconda

• Everything is an Anaconda package.

Deployment strategy (2/3) Docker

- Everything is an Anaconda package.
- Components can be run inside docker containers.

Deployment strategy (3/3) Puppet

- Everything is an Anaconda package.
- Components can be run inside docker containers.
- Setup servers with Puppet.

Scalability (1/2) Large setups

Scalability (1/2) Large setups

• Distribute the backend.

Scalability (1/2) Large setups

- Distribute the backend.
- Distribute the writer.

Scalability (1/2) Large setups

- Distribute the backend.
- Distribute the writer.
- Transparent to the user.

Scalability (2/2) Small setups

• All DAQ components on one server.

- All DAQ components on one server.
- Multiple DAQ systems on one server.

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.
- HDF5.

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.
- HDF5.
- Support Nexus compliant format.
 - \circ Beamlines decide on output format.

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.
- HDF5.
- Support Nexus compliant format.
 - Beamlines decide on output format.
- Multiple data sources:

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.
- HDF5.
- Support Nexus compliant format.
 - Beamlines decide on output format.
- Multiple data sources:
 - Single data file.

- File system:
 - Spectrum Scale by IBM.
 - FDR (56 Gb/s) Infiniband.
- HDF5.
- Support Nexus compliant format.
 - Beamlines decide on output format.
- Multiple data sources:
 - Single data file.
 - Multiple data files.

• Isolate the user from your architecture.

- Isolate the user from your architecture.
- Provide a stable and generic API.

- Isolate the user from your architecture.
- Provide a stable and generic API.
- A good versioning and deployment strategy is key.

- Stream protocol
 - <u>https://github.com/datastreaming/mflow</u>
 - <u>https://github.com/datastreaming/htypes</u>
- Detector client
 - <u>https://github.com/slsdetectorgroup/slsDetectorPackage</u>
- Writer
 - <u>https://github.com/paulscherrerinstitute/lib_cpp_h5_writer</u>
- API server
 - <u>https://github.com/datastreaming/detector_integration_api</u>

Interested in joining our efforts? We are hiring! <u>https://www.psi.ch/pa/job-opportunities/1740</u>

Questions?