

Martin Brückner :: Paul Scherrer Institut

Data Processing in the Detector and Data Transfer to the Backend

New concepts in ultra fast data acquisition 10-11 April 2018

- Eiger and Jungfrau as Examples for Modular Detectors
- Online Processing Onboard (Detector)
 –Online Compression
- Transmitting Data
 - -Round Robin in Eiger
 - –Module and Frame Delay
- FPGA based Network Card (Receiver/Backend)

Eiger and Jungfrau Detector

	Eiger	Jungfrau	
Туре	Single photon counting Modular design	Charge integrating Modular design	
Pixel size	75 x 75 μm²	75 x 75 μm²	
Dynamic range	4bit/8bit/12bit (32bit)	3 gain stages	
Maximum frame rate	23 kHz (4 bit) burst 10 kHz (4 bit) continuous	2.4 kHz continuous	
Maximum data rate per module	2x 10 Gbit/s (internal: 2x 23 Gbit/s)	2x 10 Gbit/s	
Pixel per module	512 kPixel	512 kPixel	

Eiger and Jungfrau Readout Systems

- Module based detectors
 - Independent data taking
 - Parallel data sending
 - Larger detectors with more modules mean higher data rates with the same frame rate
 - Simple module based data processing can be applied

	Eiger	Jungfrau
Fastest detectors	9 MPixel 18 modules 360 Gbit/s	10 MPixel 20 modules 400 Gbit/s

Simple to build large detectors with huge data rates
 Onboard data processing and smart data transfer desirable

Onboard Data Processing

Eiger and Jungfrau Data Processing

- Descrambling
- UDP network packet generation
- **Round Robin** (frame transmitting to several servers consecutively)

Eiger Data Processing

- Rate Correction (counting problem if 2 photons arrive too close)
- Data buffering (2000-8000 images)
- Image summation
- Under development: Simple online compression (count contiguous zeros)

Jungfrau Data Processing

• Planned: Count number of pixels of each gain state

To reduce network traffic or to widen the 20Gbit/s bottleneck an online compression is being developed

Bit Mode	Max Frame Rate [kHz]	Continous max Frame Rate [kHz]	Factor
4	22	10	2.2
8	11	5	2.2
12/16	6	2.5	2.4

Eiger is limited by its two 10 Gbit/s Ethernet ports by a factor of about 2.2-2.4

Typical ptychography image

a lot of zeros and nice to compress Usual case: compress ratio > 4

A simple zero suppression algorithm:

- Token FF + Zero Counter
 - $-00 \rightarrow 00$
 - $-00~00 \rightarrow$ FF 02
 - $-00\ 00\ 00 \rightarrow FF\ 03$
 - -00 ... 00 → FF FF 00

Best case: Image with all zeros Worst case: Image with a lot of 254 (0xFF)

Non-standard compression decompressing on receiver necessary

255x

 $-FF \rightarrow FF 00$ (Token masked as "0 Zeros")

 \rightarrow Network data rate can be reduced by a factor of 4 or more

Data Transfer to Receivers

Round Robin

Round Robin

- One server can hardly handle big multi module detectors
- Therefore several destination headers can be stored in the FPGA
- Data from all modules arrive at the same time

Round Robin with Module Delay

Individual module delay

- Time after a frame has been acquired before sending it
- Avoids load peaks on receiver side

Round Robin with Module Delay

Individual module delay

- Time after a frame has been acquired before sending it
- Avoids load peaks on receiver side
- Limit: Delaying more than the frame rate per receiver

Round Robin with Module+Frame Delay

Frame delay

- Time between sending 2 frames
- Decelerate sending of high frame rate acquisitions
- No continuous data taking possible anymore (frames are buffered in the detector)
- Better option: Unload CPU from receiving network packets and assembling images

- PSI detectors send UDP packets
- Normal reception
 - Host receives packets in a random order
 - Several memcopy operations
 - Packet inspection/sorting to reassemble the images
 - 1 address per line per module

ightarrow Realizable on an FPGA

4 Bit/Pixel	8 Bit/Pixel	16 Bit/Pixel	32 Bit/Pixel
16 lines/packet	8 lines/packet	4 lines/packet	2 lines/packet

- FPGA based network card
 - Can analyze packet headers and assemble images in host memory
 - Writes a proper image header for each image and discards packet headers
 - CPU receives a pointer
 - to the final image

Xilinx VCU108 Evaluation Board

Used for evaluation

 Virtex Ultrascale Hard IP cores DDR4 80-bit with ECC (10x GTH) (5 x 16 Components) 100Gbit/s Ethernet but no RS-FEC, no 40Gbit/s nor 10Gbit/s -8xPCIe 3.0 (64Gbit/s only) 11 1 00 For new design better use a XILINX. Ultrascale+ with FEC and 16xPCIe Pads for 4 GTY Transceivers Test setup: CFP2 Cage Eval board plugged into PCIe slot and connected via fiber QSFP28 Cage with a Mellanox 100Gbit/s card (4x GTYs) (same PC) PCIe® Edge Connector DDR4 80-bit with ECC Gen3 x8 (5 x 16 Components) XCVU095-2FFVA2104E (8x GTHs)

FPGA design:

- Packet Filter acts like a firewall
- Packet Data Splitter splits packet header from packet payload
- *Header analyser* generates the destination memory address from packet header
- Xilinx DataMover copies payload to given memory address
- Xilinx AXI to PCIe Bridge is a transparent bridge to host PC address space
- Future: Decompress proprietary detector compression

- Future:
 - FPGA based network card copies data directly into GPU memory
 - GPU for advanced image processing (see Carlos' talk)

- Eiger and Jungfrau are modular detectors
 - Large detectors can be built up easily
 - Independent read out systems
 - Large detectors produce high data rates (360Gbit/s Eiger 9M, 400Gbit/s Jungfrau 10M)
- Eiger onboard data processing
 - Online compression to shrink network data rates by a factor of 4 or more
- Transmitting data
 - Round Robin spreads the load (and not the frames) to several receivers
 - Module and frame delay can further adjust the servers' load
- FPGA based network card
 - Offloads CPU with reassembling the detectors image in the FPGA and host memory