HiDRA

High Data Rate Access

Manuela Kuhn DESY FS Detector Systems

New concepts in ultra fast data acquisition PSI - April 2018

Challenges: New Detectors

- > Current and future detectors have increasing demands: Eiger, Lambda, Percival, AGIPD
- > Support of the next generation detectors
- \rightarrow Data has to be drained from detectors before memory exhausted

Pilatus

Lambda

Detectors

Detector	OS/Access	File size/rate	Bandwidth
Pilatus 300k	Linux (Black box)	1,2 MB Files @ 200 Hz	240 MB/s
Pilatus 6M	Linux (Black box)	25 MB files @ 25 Hz 7 MB files @ 100 Hz	625 MB/s 700 MB/s
PCO Edge	Windows	8 MB files @ 100Hz	800 MB/s
PerkinElmer	Windows	16 MB + 700 Byte files @ 15 Hz	240 MB/s
Lambda	Linux	60 Gb/s @ 2000 Hz	7.5 GB/s
Eiger	Http (Black Box)	30 Gb/s @ 2000 Hz	3.8 GB/s
AGIPD	Linux	16 x 260 MB @ >4.5 MHz	15 GB/s

> Data rates exceeds 10GE network connection

> Images generated at kHz frequencies

- Millions of files per experiment
- > Wide variety of file and data formats
- >SMB, NFS not fast enough (regardless of network technology)

Challenges: Experimental conditions and setup

- > Support for next generation experiment setups (e.g. more than one detector per beamline,...)
- > Decouple persistent storage and selective image collection
- > Experiment conditions have to be monitored/analyzed in near-real time to avoid the collection of unfavorable data

HiDRA

Development of HiDRA

- > Client-server concept based on python and python and python and <a href
- > Generic tool set for high performance data multiplexing with different qualities of service

Developed as a common project between Central-IT, FS-EC and CFEL with the help of PETRA III beamlines

HiDRA

- > Directly store the data in the storage system
- > Send data to online monitoring or analysis framework
- > Modular architecture (divided into event detectors, data fetchers and receivers)
- \rightarrow This gives the possibility to adapt the software to specific detectors directly
- > Facility independent: Adaptable to other photon sources and storage systems
- > Open source
- > Performance limits not yet hit (saturate a 10 GE link, is able to handle 2000 Hz)
- > Successfully used in multiple experiments

> Fan-out

- Events are coupled with requests and send to workers
- > Workers process events:
 - Get data corresponding to the event
 - Send data to the targets which sent the requests

HiDRA Architecture

Available event detectors:

- Based on inotifyx library (Linux)
- Based on watchdog library (Linux/Windows)
- Get events via HTTP
- Get events via an API (C\Python)

Available data fetcher:

- Read from file system
- Get data via HTTP
- Get data via an API (C\Python)

Available receiver types:

- Store as files
- Forward to an application

 \rightarrow easily expandable

Connecting to HiDRA – HiDRA library

> Connecting to HiDRA

- Handling the authentication
- Signal handling

> Requesting data

- Stream or query
- Data+metadata or metadata only
- Priority
- Choosing File type

1	fro	n hidra import Transfer
2		
3		
4	if _	name == "main" <mark>:</mark>
5		
6		<pre>signal_host = "host-where-hidra-is-running.desy.de"</pre>
7		<pre>target_host = "host-where-data-should-be-send-to.desy.de"</pre>
8		target_port = "50101"
9		
10		<pre>targets = [[target_host, target_port, 1, ".*(tif cbf)\$"]]</pre>
11	#	<pre>targets = [[target_host, target_port, 1, [".tif", ".cbf"]]]</pre>
12		
13		<pre>query = Transfer("QUERY_NEXT", signal_host)</pre>
14		
15		query.initiate(targets)
16		
17		query.start()
18		
19		[metadata, data] = query.get()
20		
21		<pre>query.stop()</pre>

> Separation between set up on server (initiate) and client (start)

To enable master/worker architecture (no data duplication between the workers)

Application: OnDA

- > OnDA is an online monitor
- > Focus: Speed and stability, Portability, Flexibility

→ Mariani et al., "OnDA: online data analysis and feedback for serial X-ray imaging", J. Appl. Cryst. (2016). 49, 1073–1080

Supported Detectors

FUELOS FUELOS **Pilatus** Eiger Gspectrun 60 abection Lambda AGIPD

> AGIPD

> LAMBDA

> PILATUS

> EIGER

- > JUNGFRAU
- > PCO EDGE (Windows)
- > Perkin Elmer (Windows)

Constraints:

> Operating systems provided with detector, no updates permitted

SuSE 10

> No software allowed to being installed

 \rightarrow freezing software + deploy as zipped packages

Manuela Kuhn | HiDRA | 2018-04-10 | Seite 15

Same approach used for Windows detectors

Eiger

Constraints:

- > No Detector-PC
- > Data can only be pulled

Lambda, AGIPD and Jungfrau

Constraints:

- > Data blocks too big to send to an application directly
- > hdf5 library does not support reading from stream

 \rightarrow notify application about the newest data to be read from the storage system

Outlook and Future Development Plans

- > Continue to extend HiDRA for use at multiple facilities with upcoming detectors
- > Usage of multiple network links in development

> Sending frames directly from the detector and build HDF5 on the receiver side

Git repository:

https://stash.desy.de/projects/HIDRA/repos/hidra/browse

Documentation:

https://confluence.desy.de/display/hidra/HiDRA

