

High Throughput Data Readout Architecture

Nicolas Janvier

Wassim Mansour

The European Synchrotron

OUTLINE

Introduction

- DAQ framework Concept
- Advanced Demonstrator
- Current Activities
 - 100 GbE
 - RASHPA Backend board
- Plans and Perspectives

Introduction

Motivations:

- Current and upcoming advanced detectors produce very high data throughput.
- Industrial DAQ protocols do not handle the required data throughput
- The need for a standard tool
- Sufficiently generic and scalable
- Reusable in a wide range of high performance detectors

Objective:

- Building such platform:
 - RASHPA: RDMA-based Acquisition System for High Performance Applications
 - Initiated in the frame of the European Project: CRISP
 - And continued in the frame of the European Project: Eucall

pco.edge

> 1 GByte/s

CRISP

EUCALI

PSI/Eiger 2M

3

RASHPA Concept

High Performance

- •RDMA to copy data from source to memory buffer
- Multiple and simultaneous data streams

Scalability

- Support single or multiple sensors and workstations
- Adjustable bandwidth

Flexibility

- •Adapt to detector geometry (offset, stride, ...)
- •Configurable data streams (image, ROI, event)
- •Data transport layer (PCIe over Cable, GbE, ...)

RASHPA Concept

- RASHPA allows detectors to push data into backend computers
- Usual destinations: Memory Buffers
- Other destinations: GPU, Coprocessors, disk controllers ...

- BCs receiving data from DM are called data receivers (DR)
- BC that configures and initializes RASHPA is called System Manager (SM).
- Both managed by C-Library: Librashpa

Multi-computer backend Multimodule detector System Detector librashpa **RASHPA** Manager server CC 010001... RASHPA Data Detector librashpa CC 010101... Receiver server Data switch system RASHPA C. 010011... Data Detector librashpa server Receiver

Data Flow

Data Flow

Rashpa Configuration

Rashpa Configuration

Data Link Selection

Link Selection

- PCIe over cable was selected for data transfer
 - Native integration
 - RDMA Capable

One Stop Systems switch

Limited Capabilities

Lack of Standardization

Dolphin IXS600

Supported link

One Stop Systems cable adapter

Dolphin PXH810

RASHPA Advanced Demonstrator

RASHPA implemented on PFPKX7 commercial board from techway and integrated to smartpix detector

> The system manager acts as a data receiver and implement the PCIe switching network.

An industrial PC is used as a second data receiver.

RASHPA Advanced Demonstrator

RASHPA implemented on PFPKX7 commercial board from techway and integrated to smartpix detector

> The system manager acts as a data receiver and implement the PCIe switching network.

An industrial PC is used as a second data receiver.

Smartpix detector is used as the XRAY detector for testing but replaced by an emulator to get significant data.

Experimental Results

GENERICS Event addr 0x79000000 Image Addr 1 0x79400000	Detector Emulated Data Image Count	Image Dimensions		
Event addr 0x79000000 Image Addr 1 0x79400000	Image Count	X Size		
Image Addr 1 0x79400000		280	📓 Data Receiver - Irashpaid001 🔶 🗆 🗙	Data Receiver - I-lob-115-p1 🔹 -
		Y_Size 216	Start	Start
Image Addr 2 0x79C00000	CHANNEL 1	CHANNEL 2	Next	Next
PLX CONFIG	Pixel Size 32	Pixel Size 32	Provinus	Previous
Event ADDR 0xFAC00000	Line Count 216	Line Count 108	ESRF	
Image ADDR 0xFA800000	Line Size 280	Line Size 100	Reset The European Synchrotron	Reset
reset Rashpa	Start Line 0	Start Line 54	Data Receiver Reset. [DONE]	Data Receiver Reset. [DONE] image received
run Rashpa	Pixel Offset	Pixel Offset 90	Exit: 0	Exit: 0
config Rashpa	Block Count	Block Count		
RASHPA reset DONE! Configuration Done!! Running rashpa				

Performance Tests 12 Bandwidth when data available to the application 8.18Gbps 51.15%

	Bandwidth within the FPGA	Bandwidth when data available to the application
Detector	10.88Gbps	8.18Gbps
PC Gen2x4	68%	51.15%
Industrial PC Gen1x1	1.44Gbps 71.99%	1.12Gbps 56.28%

DDP Meeting

100G Ethernet as Data Link

• 100G Ethernet

- Free Hard IP core on ultrascale+ families
- Ethernet does not have native RDMA Capabilities

• What RDMA protocols to use?

- Candidates could be:
 - RoCEv2: RDMA over Converged Ethernet (UDP based)
 - iWarp: internet Wide-area RDMA Protocol (TCP based and now UDP)
 - An ESRF customized protocol

Mellanox ConnectX-4

KCU116 Xilinx development kit

Lab Tests

• Successful connection schemes

- Network Adapter to Network Adapter (Win10, Linux)
- Board to board (KCU116)
- Board to Network Adapter (KCU116 to Mellanox)
 No Switch test yet
- UDP Protocol
 - C and python applications
 - Wireshark

RoCE-V2 has been successfully tested for - Soft-RoCE (over ESRF network) - RoCE-V2 (Mellanox/FPGA to Mellanox) (Thanks to Raphael Ponsard)

Bandwidth Tests

Packet Size including header in Bytes

Rashpa Backend Board

- Backend board features
 - Virtex Ultrascale + VU9P
 - High density and parallel memory banks
 - Two QSFP28 100G Interfaces
 - PCIe Gen3x16 or Gen 4x8 edge connector

XpressVUP from reflexces

Integration with Smartpix detector

- This board can serve as a backend for the ESRF smartpix detector in its current version
 - Link between smartpix front-end and this board is Aurora
 - Two data link types can be used
 - PCle Gen3x16
 - 100G ethernet
 - Smartpix and Rashpa control
 - PCIe Gen3x16

Perspectives

• This board can also be used racked to serve as a rashpa box for other detectors (such as the EIGER or JUNGFRAU detector)

And [maybe] More!!!

Today at ESRF: data is streamed through a LIMA based 'detector server'

All image manipulation is 100% software based

→ Hardware assisted DAQ and image manipulation (RASHPA)

THANK YOU!

