



**Carlos Lopez-Cuenca :: Paul Scherrer Institut** 

### Online data processing for high data rate detectors

New concepts in ultra fast data acquisition 10-11/04/2018



# Why online data processing?

- Conversion to number of photons
  - 16Mpx Jungfrau detector @ 100Hz for SwissFEL
    - 3.4GBps of raw data
- Live data analysis
  - 4Mpx Jungfrau detector @ 1kHz for a 5-day experiment in Japan
    - 8.4GBps of raw data
    - 250TB of data stored after the experiment
- Data reduction
  - 10Mpx Jungfrau detector @ 2kHz for SLS
    - 42GBps of raw data



16M Jungfrau detector for the Bernina Experimental Station @ SwissFEL

- So, why online data processing?
  - Provide a live (reduced) data analysis enough to monitor the validity of the experiment
  - Reduce the throughput and the amount of data to be stored



- Hybrid detectors
  - Sensor + Detector chip + Control electronics

#### • In 2 different families

- Single photon counting detectors
  - Counts the photons that hit every pixel during the exposure.
- Charge integrating detectors
  - Integrate the charge collected by the sensor for every pixel.

pixel :

input :

reamplifier stage

- Automatic gain switching
  - To expand the dynamic range



Digital

memory

(x16)

Sensor

CDS stage

Automatic

Gain

Switching

bus

(digital)

Pixel buffer

Pixel



# **2** Families – 2 Processing pipelines

#### Single photon counting detectors

- Output  $\rightarrow$  Number of photons that hit each pixel

#### Charge integrating detectors

- Output  $\rightarrow$  Amplification stage + Amplified charge
- Needs to be converted to the number of photons
  - Q1: which gain are we in?
  - Q2: how far above pedestal are we?
  - Q3: what energy caused that?
  - Q4: how many photons does that mean?

| ge  | 01                                     | 00001011001000   |  |  |  |  |
|-----|----------------------------------------|------------------|--|--|--|--|
| ns  | Gain                                   | ADC value        |  |  |  |  |
|     | $00 = G_0$<br>$01 = G_1$<br>$11 = G_2$ | 016383           |  |  |  |  |
| Amp | olification used                       | Amplified charge |  |  |  |  |

$$N_{\gamma} = \frac{|\text{ADC} - \text{pede}| [\text{ADU}] \times \text{gain} [\text{keV}/\text{ADU}]}{E_{\text{beam}} [\text{keV}]}$$



# Conversion to Number of Photons

- Every pixel is characterized with:
  - 3 gain constants
  - 3 pedestal variables
- For a 0.5Mpx Jungfrau detector:
  - 768Mb (16-bit) of memory
    - 16 storage cells
  - For 2.4kHz rates
    - DDR3 controller @ >800MHz





- System checklist
  - Computational power
  - Memory bandwidth
  - Scalability
  - Flexibility
  - Development time
  - Cost

FPGA + GPU







# Online data processing: FPGA & GPU

### System proposal

- Module control board
  - Controls the acquisition and readout of the detector chips
  - Streams out images via GbE
- FPGA –based network card
  - Assembles full images in the host memory
- GPU-based application
  - Computes the number of photons for every pixel
  - Further processing:
  - Frame addition, live correction, ...





# GPU-based processing application

- Scalable application for charge integrating detectors
  - Performs the conversion to number of photons
  - Updates pixel pedestal values as they drift over time
  - Sums a configurable number of consecutive images
- Open collaboration with the HZDR Computational Radiation Physics group
- Application integrated @ PSI to process data from the detector
  - GPU: Nvidia Tesla P100
    - Core clock: 1.3GHz
    - Memory Bandwidth > 500GBps

| Features                            | P100        |  |  |
|-------------------------------------|-------------|--|--|
| Compute capability                  | 6.0         |  |  |
| Number of Multiprocessors           | 56          |  |  |
| Number of Streaming Processors      | 3584        |  |  |
| Streaming Processors/Multiprocessor | 64          |  |  |
| Threads/Warp                        | 32          |  |  |
| Max Warps/Multiprocessor            | 64          |  |  |
| 32-bit Registers/Multiprocessor     | 65536       |  |  |
| Memory Controller                   | 8x512b HBM2 |  |  |

|                                                                                                                                                                         | Compute Capability |     |             |                 |             |     |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------------|-----------------|-------------|-----|-----|--|
|                                                                                                                                                                         | 2.0                | 2.1 | 3.0,<br>3.2 | 3.5,<br>3.7     | 5.0,<br>5.2 | 5.3 | 6.0 |  |
| 16-bit floating-<br>point add,<br>multiply,<br>multiply-add                                                                                                             | N/A                | N/A | N/A         | N/A             | N/A         | 256 | 128 |  |
| 32-bit floating-<br>point add,<br>multiply,<br>multiply-add                                                                                                             | 32                 | 48  | 192         | 192             | 128         | 128 | 64  |  |
| 64-bit floating-<br>point add,<br>multiply,<br>multiply-add                                                                                                             | 16 <sup>1</sup>    | 4   | 8           | 64 <sup>2</sup> | 4           | 4   | 32  |  |
| 32-bit floating-<br>point reciprocal,<br>reciprocal<br>square root,<br>base-2 logarithm<br>(_log2f), base<br>2 exponential<br>(exp2f), sine<br>(sinf), cosine<br>(cosf) | 4                  | 8   | 32          | 32              | 32          | 32  | 16  |  |
| 32-bit integer<br>add, extended-<br>precision add,<br>subtract,<br>extended-<br>precision<br>subtract                                                                   | 32                 | 48  | 160         | 160             | 128         | 128 | 64  |  |

### Performance: 0.5Mpx Jungfrau GPU processing

- Tested the performance of the GPU based application with
  - Only 20ms are required to convert 1000 frames per module
  - Online processing application is able to process 1000 frames (1GB) in 198ms
  - Main bottleneck is data transfer between host memory and GPU
    - Additional processing could be carried out without performance penalty
    - Maximum throughput should be  $\approx$  11GBps for 2 processing streams
      - GPU application needs to be adapted to PASCAL architecture



# Further processing: Cluster Photon Finding

- Cluster Finding Algorithm
  - Extracts the region of interest for each photon detected
  - Input:
    - Raw data from the detector
  - Output:
    - Number of NxN clusters: (3x3), (5x5)
    - Coordinates of the cluster center
    - Signal value of each pixel in the cluster
    - Noise value of each pixel in the cluster
- Data reduction
  - Further analysis proceeds with a reduced set of data









Further processing: Data compression

- Converted images are compressible
  - Data sets are very different for each experiment
  - Best results obtained with BLOSC library
    - Meta-compressor: Compressor + pre-conditioners
  - Compression factor: x4 x10 for single frames





Single frame 1Mpx Jungfrau detector Single Thaumatin crystal



Further processing: Data compression

- Converted images are compressible
  - Data sets are very different for each experiment
  - Best results obtained with BLOSC library
    - Meta-compressor: Compressor + pre-conditioners
  - Compression factor: x3 for 1000 consecutive added frames



1000 added frames 1Mpx Jungfrau detector Vitamin-C powder diffraction



Further processing: Data compression

- Ultimate goal is to reduce the data volume to a point where the maximum throughput is ≈4GBps
  - Compression factor: x4 x10 for single frames
  - Compression factor: x3 for 1000 consecutive added frames





- Data volumes and throughput of high data rate detectors threatens the capacity of current data back-end systems
  - Processing (1 CPU core per 10GbE interface)
  - Storage space (max of 4GBps)
- We have presented a system solution that should offload computational load at the data back-end and reduce storage requirements
  - FPGA –based network card
    - Offloads CPU from emptying UDP queues
  - GPU based application
    - Performs online conversion to number of photons for charge integrating detectors
    - Addition consecutive frames
- Further steps
  - Implement the Cluster Photon Finding algorithm in the GPU -based application
  - Reduce data volume running a high-throughput lossless compression algorithm



### Wir schaffen Wissen – heute für morgen

