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• Introduction

• Boosted decision trees for B0
s → µ+µ−

. technicalities

. training/optimization

. the devil in the details

• Outlook

MVA = multivariate analysis



Introduction
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• Just my past experiences
. not a lecture

• experience from B0
s → µ+µ−

. not ‘statistics’

. not much about the theoretical foundations (Neyman-Pearson, Bayes, . . . )

• one specific example: boosted decision trees
. not the many alternatives, e.g. Fisher, likelihood ratios, ANN, . . .

• binary classification: signal vs background
. not multi-class classification
. not regression (improved calibration)

• supervised learning
. signal from MC simulation
what else can you do in a search?

. background: MC/‘sidebands’/event crossing
dimuon mass outside from signal region
capture several/different background processes
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(Binary) Event classification
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• Data set with two event types
. signal
. background
. discriminating variables: x1, x2

(more in reality, but 2 are sufficient
for ‘multivariate’ analysis)

⇒ optimal classification algorithm?
→ machine learning!
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Multivariate event classification
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• Determine mapping from d variables to one number
from input variables

y = y(x)

x = {x1, . . . , xd}
find discriminating function

y(x) : Rd → R

(Probability density) Distributions of y(x) for signal and background
PS(y) signal (‘towards’ +1)
PB(y) background (‘towards’ −1)

. y(x) = const. defines (affine) hyperplane in Rd

• Usage of y(x)
. classification (statistical test)

y(x) > C : ‘signal’
y(x) < C : ‘background’

. partitioning: categorize data (→ equal signal yield/cat.)

. fitting: move (most) signal into one place
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Error 6= mistake
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• How to choose the ‘best’ MVA selection?
. every decision carries a risk

• type-1 error: ‘false positive’
. event classified as X though it’s not
. ‘fakes’
. significance level α =

∫
y>C PB(y)dy

should be small (= background efficiency)

• type-2: ‘false negative’
. event not classified as X though it is
. ‘inefficiency’
. β =

∫
y<C PS(y)dy

1− β is called power (= signal selection efficiency)

• ‘Confusion matrix’

A type-I error is to falsely infer the existence of something that is not there,
while a type-II error is to falsely infer the absence of something that is.
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How to choose? (I)
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• ROC curve = Receiver Operating Characteristic curve
. different MVA selection algorithms correspond to different curves
. curve corresponds to different values of C

• Popular metric
. AUC = Area Under (roc) Curve

between 0.5 and 1, more is better
(Neyman-Pearson lemma: likelihood ratio test is ‘best’. But . . . )

→ metric independent of C
. However critique

ROC originated in non-physics fields
different goals imply different tools
n patients, have cancer? - yes or no?
→ TN important for test ‘accuracy’
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How to choose? (II)
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• ‘We’ do not care about background not entering the analysis (TN)
. efficiency, purity, S and B require no knowledge of TN

S = TP
B = FP

. Need prior probabilities (e.g. from sidebands)
S and B abundances

• Various possibilities known/established
. measurement: max(S/

√
S +B)

. discovery: max(S/
√
B)

. precision meas: max(p), where p = purity = S/(S +B)

. trigger selection: max(ε), where ε = efficiency = TP/(TP+FN)
max(r), where r = background rejection = TN/(TN+FP)

= 1− ε(B)

. comparison of data/MC simulation

. improved versions of the above, taking into account background error(s)
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Technicalities

14 3 Using TMVA

Figure 7: Left: Flow (top to bottom) of a typical TMVA training application. The user script can be a
ROOT macro, C++ executable, python script or similar. The user creates a ROOT TFile, which is used by
the TMVA Factory to store output histograms and trees. After creation by the user, the Factory organises
the user’s interaction with the TMVA modules. It is the only TMVA object directly created and owned by
the user. First the discriminating variables that must be TFormula-compliant functions of branches in the
training trees are registered. For regression also the target variable must be specified. Then, selected MVA
methods are booked through a type identifier and a user-defined unique name, and configuration options are
specified via an option string. The TMVA analysis proceeds by consecutively calling the training, testing
and performance evaluation methods of the Factory. The training results for all booked methods are written
to custom weight files in XML format and the evaluation histograms are stored in the output file. They can
be analysed with specific macros that come with TMVA (cf. Tables 2 and 4).
Right: Flow (top to bottom) of a typical TMVA analysis application. The MVA methods qualified by the
preceding training and evaluation step are now used to classify data of unknown signal and background com-
position or to predict a regression target. First, a Reader class object is created, which serves as interface
to the method’s response, just as was the Factory for the training and performance evaluation. The dis-
criminating variables and references to locally declared memory placeholders are registered with the Reader.
The variable names and types must be equal to those used for the training. The selected MVA methods are
booked with their weight files in the argument, which fully configures them. The user then runs the event
loop, where for each event the values of the input variables are copied to the reserved memory addresses, and
the MVA response values (and in some cases errors) are computed.

TMVA user guide

• Many packages exist that make MVA straightforward to set up
. TMVA (integrated into ROOT)
. SNNS, MLPFit, NEUROBAYES, StatPatternRecognition, . . .
. TensorFlow (even in your browser :-)
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Decision Tree(s)

8.12 Boosted Decision and Regression Trees 109

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

8.12.1 Booking options

The boosted decision (regression) treee (BDT) classifier is booked via the command:

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 50: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 22 and 24 and described in more detail in Sec. 8.12.2.
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→ completely straightforward
interpretation

→ problem: sensitive to
fluctuations in
training sample

node→

leaf→

• Sequential application of cuts splits sample into nodes
. final nodes are classified as signal S or background B
. variables and cuts determined by best ‘separation gain’

‘Gini’ index G ≡ p(1− p)
→ Nparent ×Gparent −Nleft ×Gleft −Nright ×Gright

. stop when a given criterion is reached
number of events in node
purity
maximum depth

. prune tree (cut back)
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Boosted decision trees (BDT)
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• Create ensemble of decision trees by reweighting events
. misclassified events are given higher weight α in subsequent tree(s)

α =
1− err
err

. For ensemble of N trees calculate weighted sum for yBDT(x)

yBDT(x) =
1

N

N∑
i

ln(αi)yi(x)

. This is known as adaptive boosting (AdaBoost)
events and decision tree output are reweighted

. Other boosting methods
available, e.g.
gradient boosting
bagging (resampling)
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Technicalities II

BDT response
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12 3 Using TMVA
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

• TMVA workflow
. training: determine ‘forest’ structure

XML file with explicit cuts and topology

. testing: against overtraining∗)

independent sample(s)
Kolmogorov-Smirnov prob.

. evaluation: performance determination
(ROC curve, by default)

. validation:
stability of training?
do the cuts make sense?
outliers anywhere?

. application in your analysis
reader (XML)
function (C++ code fragment)

∗) “Overtraining occurs when a machine learning problem has too
few degrees of freedom, because too many model parameters
of an algorithm were adjusted to too few data points.”
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Explicit TMVA example
• CMS B0

s → µ+µ− TMVA setup (w/o programmable variations):
// --- load library and setup basics
TMVA::Tools::Instance();

TFile *oFile = TFile::Open("aname.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory("aname", oFile,

"V:!Silent:!Color:!DrawProgressBar:Transformations=I:AnalysisType=Classification");
TMVA::DataLoader *dataloader = new TMVA::DataLoader("dataset");

// --- setup variables and trees
dataloader->AddVariable("pt", ’F’);
dataloader->AddVariable("iso", ’F’);
// etc.
dataloader->AddSpectator("m", "mass", "GeV", ’F’ );

TTree *trainSg = (TTree*)inFile->Get("signalEvents0/events");
TTree *testSg = (TTree*)inFile->Get("signalEvents1/events");
TTree *trainBg = (TTree*)inFile->Get("sidebandEvents0/events");
TTree *testBg = (TTree*)inFile->Get("sidebandEvents1/events");

dataloader->AddSignalTree(trainSg, signalWeight, TMVA::Types::kTraining);
dataloader->AddSignalTree(testSg, signalWeight, TMVA::Types::kTesting);
dataloader->AddBackgroundTree(trainBg, cbackgroundWeight, TMVA::Types::kTraining);
dataloader->AddBackgroundTree(testBg, tbackgroundWeight, TMVA::Types::kTesting);

dataloader->PrepareTrainingAndTestTree("", "nTrain_Signal=1.e4:nTest_Signal=1.e4:nTrain_Background=1.e4\\
:nTest_Background=1.e4:SplitMode=Block:NormMode=None:V");

// --- Book, train, test, and evaluate methods
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:V:NTrees=800:BoostType=AdaBoost:AdaBoostBeta=0.5");
factory->TrainAllMethods();
factory->TestAllMethods();
factory->EvaluateAllMethods();

• timing? a few minutes
3 BDTs with 800 trees/a dozen variables/event statistics O(104)
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Setup subtleties

BDT response
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

dx / 
(1

/N
) 

dN

0

1

2

3

4

5

6
Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.158 (0.127)

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

BDT response
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

dx / 
(1

/N
) 

dN

5−10

4−10

3−10

2−10

1−10

1

10

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.158 (0.127)

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

• It is easy to setup an MVA application
. but to get into the best possible world, care is required

• Input samples
. statistics: imbalance between background and signal not useful
. partitioning: different regions of detector/phasespace
. preselection: outliers/statistics

• Variables
. insensitive to useless variables (but: statistics!)
. transformations

• 2 samples? 3 samples?!
→ is a sideband interpolation biased?
. training
. testing
. application
→ especially for very delicate searches!
→ TMVA does not help you, diy (e.g. evt%3==0[1,2] )
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Parameter choices

110 8 The TMVA Methods

Option Array Default Predefined Values Description

NTrees – 800 – Number of trees in the forest

MaxDepth – 3 – Max depth of the decision tree allowed

MinNodeSize – 5% – Minimum percentage of training
events required in a leaf node (default:
Classification: 5%, Regression: 0.2%)

nCuts – 20 – Number of grid points in variable
range used in finding optimal cut in
node splitting

BoostType – AdaBoost AdaBoost,

RealAdaBoost,

Bagging,

AdaBoostR2,

Grad

Boosting type for the trees in the for-
est (note: AdaCost is still experimen-
tal)

AdaBoostR2Loss – Quadratic Linear,

Quadratic,

Exponential

Type of Loss function in AdaBoostR2

UseBaggedBoost – False – Use only a random (bagged) subsam-
ple of all events for growing the trees
in each iteration.

Shrinkage – 1 – Learning rate for GradBoost algo-
rithm

AdaBoostBeta – 0.5 – Learning rate for AdaBoost algorithm

UseRandomisedTrees – False – Determine at each node splitting the
cut variable only as the best out of
a random subset of variables (like in
RandomForests)

UseNvars – 2 – Size of the subset of variables used
with RandomisedTree option

UsePoissonNvars – True – Interpret UseNvars not as fixed num-
ber but as mean of a Possion dis-
tribution in each split with Ran-
domisedTree option

BaggedSampleFraction – 0.6 – Relative size of bagged event sample to
original size of the data sample (used
whenever bagging is used (i.e. Use-
BaggedBoost, Bagging,)

UseYesNoLeaf – True – Use Sig or Bkg categories, or the pu-
rity=S/(S+B) as classification of the
leaf node -> Real-AdaBoost

Option Table 22: Configuration options reference for MVA method: BDT. Values given are defaults. If
predefined categories exist, the default category is marked by a ’?’. The options in Option Table 9 on page 60
can also be configured. The table is continued in Option Table 24.

8.12 Boosted Decision and Regression Trees 111

Option Array Default Predefined Values Description

NegWeightTreatment – InverseBoostNegWeightsInverseBoostNegWeights,

IgnoreNegWeightsInTraining,

PairNegWeightsGlobal,

Pray

How to treat events with negative
weights in the BDT training (partic-
ular the boosting) : IgnoreInTrain-
ing; Boost With inverse boostweight;
Pair events with negative and positive
weights in traning sample and *anni-
hilate* them (experimental!)

NodePurityLimit – 0.5 – In boosting/pruning, nodes with pu-
rity > NodePurityLimit are signal;
background otherwise.

SeparationType – GiniIndex CrossEntropy,

GiniIndex,

GiniIndexWithLaplace,

MisClassificationError,

SDivSqrtSPlusB,

RegressionVariance

Separation criterion for node splitting

DoBoostMonitor – False – Create control plot with ROC integral
vs tree number

UseFisherCuts – False – Use multivariate splits using the
Fisher criterion

MinLinCorrForFisher – 0.8 – The minimum linear correlation be-
tween two variables demanded for use
in Fisher criterion in node splitting

UseExclusiveVars – False – Variables already used in fisher crite-
rion are not anymore analysed individ-
ually for node splitting

DoPreselection – False – and and apply automatic pre-selection
for 100% e�cient signal (bkg) cuts
prior to training

RenormByClass – False – Individually re-normalize each event
class to the original size after boost-
ing

SigToBkgFraction – 1 – Sig to Bkg ratio used in Training (sim-
ilar to NodePurityLimit, which cannot
be used in real adaboost

Option Table 23: Continuation of Option Table 22.

• Default TMVA parameters settings are quite good
. scanning ranges will never hurt
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Optimization workflow
• Prerequisites

. code setup to allow changing ‘everything’ from the command line

. preselection of training/testing trees/files

. variables

. ranges and steps of BDT parameters to optimize

• Operationally
. run on cluster with worker nodes
→ distribute training/testing files to local /scratch disks
. abort individual trainings asap
→ define minimum criteria and calculate required ingredients
• KS-probability
• sensitivity
• similarity of y(x) distribution

⇒ O(104) jobs
sometimes several iterations
(but this also applies to (random) grid searches, etc)
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BDT technical evaluation
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• error fraction
. unboosted (original) events
. for ‘difficult’ events→ 0.5

• boost weight
. remember its definition?

• # tree nodes
. w/ or w/o leaf nodes
. depends on depth of BDT
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BDT validation of variables
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• Check (from XML file)
. distribution of cuts
. usage of variables in trees
. variable correlations
. variable power
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Data/MC validation
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• MC simulation description of data
. check variable distributions for specific C
. check y(x) for various preselections

• Samples to compare?
. background MC with background data
. ‘control’ samples
• identical topology as signal not mandatory

→ calculate variables correspondingly
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‘Control’ samples
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• ‘Candidate’ variables are ‘trivial’
. dimuon B0

s → µ+µ−

. B+ → J/ψK+ → µ+µ−K+

• degrees of freedom
. restrict to subset (dimuon vtx)
. renormalize (χ2/dof )

• ‘environment’ variables:
. do not include

‘candidate’ tracks

• y(x) will look different:
. different topology
. does not matter!
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Systematics
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• One number/event allows systematic studies
. dependence of y(x) distribution vs. key variables

• Generate signal MC with different
. mass, lifetime, . . .

• quantification of systematics?
. reweighing for data/MC differences
. e.g. different ‘cut’ efficiency in data/MC

(control samples)
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Outlook
• There is no magic involved in supervised machine learning

. it will not ruin your analysis

. it will not save you

. it will boost your sensitivity by O(20%), compared to ‘good’ cuts

• Disclaimers
. garbage in, garbage out
. you control the training and validation
. performance differences between ANN/BDT/. . . normally smaller

than other factors

• Many ways to test/optimize/validate any MVA setup
. absolutely required

• More information, e.g.
. tmva.sourceforge.net
. http://tmva.sourceforge.net/talks.shtml and references in there
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