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® Introduction

e Boosted decision trees for BY — puu~

> technicalities
> training/optimization
> the devil in the details

e Qutlook

MVA = multivariate analysis
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Summary

Hotelling (1933), one of the pioneers in the field of multivariate analysis, was also among the first to use methods
based on order stallsha in thal field. He introduced the method of principal components, which are ordered
roots of deter in Itiple factor lysis. During the next 15 years, related work was
performed by Thomson (1934), Girshick (1936), Hotelling (1936a), Aitken (1937), Bartlett (1938), Lawley (1940)
and Tintner (1945). Hotelling (1936b) studied relations belween two sets of variates, obtained distributions of
canonical correlations, which are also roots of determi i and of functions of ical correla-
tions, arranged in order of magnitude. Other early contributors to the theory of canonical analysis were
Girshick (1939), Bartlett (1947a, b, 1948) and Tintner (1946). Fisher (1938), in a fundamental paper on linear
discriminant analysis, dealt with s-1 orthogonal comparisons of s components, arranged in order of the magnitude
of their oonmbuuom No fewer than four authors (Fisher, 1939; Girshick, 1939; Hsu, 1939; Roy, 1939)
1 results on the distribution of the ordered roots of determinantal equations,
and during the next ten years further results were obtained by Roy, Hsu, Wilks, Anderson, Bartlett, Geary,
Nanda and Rao. Tintner (1946) ized some_ lications of four hods of muluvnnate analysis
(discriminant lysi pnncupal 1 correlation, and weighted regression), all based on
order statistics, to economic data. The author of this paper discusses these are other early applications to
multivariate analysis, including the use of order statistics in obtaining tolerance regions (first proposed by
Wald, 1943), and gives a list of references selected from the first volume (pre-1950) of his chronological anno-
tated bibliography on order statistics.

1 Introduction

The importance of methods based on order statistics in the early development of multivariate
analysis is illustrated by the fact that Tintner (1946), in discussing applications of multivariate
analysis to economic data, presents four methods, all of which are based on order statistics.
These methods are summarized as follows in Tintner’s own words (pp. 472-473): ‘(1) Dis-
criminant analysis: Here we propose to determine linear functions of “indexes” computed
from various measurable characteristics of certain data. The data have been classified into two
groups. Discriminant analysis tries to establish linear functions of the characteristics which
are such that they distinguish most fully between these groups. This method was
invented by R.A. Fisher. A test of significance utilizes earlier work of Harold Hotelling. (2)
Principal components: We try to answer the following question: Is it possible to analyze a set
of variables into a more fundamental set of components (“factors™) possibly fewer in number ?
Which portion of the total variance can be accounted for by each component ? The best method
in this field is due to Harold Hotelling. (3) Canonical correlation: Assume we have two sets of
variables. How can we determine linear combinations (“indexes”) of the variables in each set
in such a fashion that the correlation between the indexes becomes a maximum ? This method
is due to Harold Hotelling. (4) Weighted regression: Assume that we have a set of variables
all of which are subject to disturbances (“errors”). How can we find a weighted linear regres-
sion function which will give us the “best” estimates of the weighted regression coefficients ?
This method, evidently closely related to classical multiple regression analysis, is in its present
form due to Tjalling Koopmans. It can also be used to answer a question previously raised by
Ragnar Frisch: How many linear relationships exist probably between the variables (multi-
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Introduction

e Just my past experiences
> not a lecture \ /

e experience from BY — utpu~ /| %

> not ‘statistics’

> not much about the theoretical foundations (Neyman-Pearson, Bayes, . . . )

e one specific example: boosted decision trees
> not the many alternatives, e.g. Fisher, likelihood ratios, ANN, . . .

/////////////////

e binary classification: signal vs backgroundzoas-

> not multi-class classification
> not regression (improved calibration)

e supervised learning
> signal from MC simulation
what else can you do in a search?
> background: MC/‘sidebands’/event crossing
dimuon mass outside from signal region
capture several/different background processes
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(Binary) Event classification

e Data set with two event types S 3.-'.','. RS
> signal U Findd 55
> background o, c'”
>~ discriminating variables: z;, 5 e \-';(}x;"::
(more in reality, but 2 are sufficient SRR <t
for ‘multivariate’ analysis) 02 i %

= optimal classification algorithm? oL Backargndle. ot
— machine learning! X,

Linear boundary (Fisher)

1 Rectangular cuts
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Multivariate event classification

e Determine mapping from d variables to one number
from input variables

y = y(x)
x = {x1,...,x4}
find discriminating function

150}

100}

50/

bz 2%
02 04 06 08 1 0

y(x) : RY =R

(Probability density) Distributions of y(x) for signal and ~\ background
Ps(y) signal (‘towards’ +1)
Pr(y) background (‘towards’ —1)

> y(x) = const. defines (affine) hyperplane in R z;100733@) Ps(y)
e Usage of y(x) o %2
> classification (statistical test) : C %
y(x) > C: ‘signal’ 200, nd
y(x) < C: ‘background’ 100 v
> partitioning: categorize data (— equal signal yield/cat.)

. . . Y S
> fitting: move (most) sighal into one place yO<)
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Error - mistake

e How to choose the ‘best’ MVA selection?
> every decision carries a risk

e type-1 error: ‘false positive’
> event classified as X though it’s not

> ‘fakes’
> significance level a = [ _ . Pg(y)dy
should be small (= background efficiency)

e type-2: ‘false negative’
> event not classified as X though it is
> ‘inefficiency’
> 5 — fy<c PS(y)dy

1 — g3 is called power (= signal selection efficiency)

y(x)

e ‘Confusion matrix’

A type-1I error is to falsely infer the existence of something that is not there,
while a type-1I error is to falsely infer the absence of something that is.

Urs Langenegger Aspects of MVA techniques (2018/04,/30) 5



How to choose? ()

e ROC curve = Receiver Operating Characteristic curve
> different MVA selection algorithms correspond to different curves

> curve corresponds to different values of C

e Popular metric background rejection = TN/(TN+FP)

=

> AUC = Area Under (roc) Curve
between 0.5 and 1, more is better

(Neyman-Pearson lemma: likelihood ratio test is ‘best’. But . . . )

— metric independent of C
> However critique

ROC originated in non-physics fields

different goals imply different tools
n patients, have cancer? - yes or no?
— TN important for test ‘accuracy’

o
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https://indico.cern.ch/event/679765/contributions/2814562/attachments/1590383/2516547/20180126-ROC-AV-IML_v008_final.pdf

How to choose? (ll)

e ‘We’ do not care about background not entering the analysis (TN)
> efficiency, purity, S and B require no knowledge of TN
S =TP
B = FP
> Need prior probabilities (e.g. from sidebands)
S and B abundances

e Various possibilities known/established

> measurement: max(S/v/S + B)
> discovery: max(S/v/B)
> precision meas: max(p), where p = purity  =S5/(S+ B)
> trigger selection: max(e), where ¢ = efficiency = TP/(TP+FN)
max(r), where r = background rejection = TN/ (TN+FP)

=1—¢(B)
> comparison of data/MC simulation
> improved versions of the above, taking into account background error(s)
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Technicalities

TMVA user guide

e Many packages exist that make MVA straightforward to set up
> TMVA (integrated into ROOT)

> SNNS, MLPFit, NEUROBAYES, StatPatternRecognition, . . .
> TensorFlow (even in your browser :-)

User Training

User Application
Script

Script
Create ROOT
Target File
uses
create
——> TMVA::Factory |
execute API Add Variables
> ................... >
Add Variables
®
(@)
g Initialise
S execute nitia
g P APl Training and
2 Test Trees
o
2
2 API Book MVA
execute kType, Options
X u > ................... >
Book MVA
kType, Options
execute Train MVAs
write weight files
execute
API Test MVAs
execute
. API Evaluate MVAs
Y Y

flow of sequences

Create

——— TMVA::Reader |

API

Add Variables

execute
X > ................... »
—» Add Variables

Book MVA

execute weight file to read
» ................... »

> Book MVA

weight file to read
begin event loop
-
event loop

—p- | pdate event

>

API
Compute MVA
execute
Compute MVA

>

end event loop

Urs Langenegger
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Decision Tree(s)

e Sequential application of cuts splits sample into nodes
> final nodes are classified as signal S or background B

> variables and cuts determined by best ‘separation gain’
‘Gini’ index G = p(1 — p)
— Nparent X Gparent — Nleft X Gleft — Nright X G'right

> stop when a given criterion is reached

number of events in node node —s
purity
maleum depth [xj>c2} [xj<c2} [:j> C3} [xj<c3}
> prune tree (cut back) leaf — @ @
Nonlinear boundary (sample 1) Nonlinear boundary (sample 2) \
S B R LTSGRl o8 I TLERTE ] Signal [xk > c4) [xk < c4]
: R ° ¢ .. .0...., : . r o ° % °. b l \
08~ . 08~ = ,re, “ @
; Rk
0.6 0.6F - e
- B L Ak — completely straightforward
04 . - 04 .’ ,f;;";é TNt e interpretation
i '}.‘A\-é.i °e . .
e - o oy ..
02- 02- s — problem: sensitive to
L ° ) . L e o ..:.:.{.. . .
O’BaCkgrQ'Lmﬁm L OfBaCkng:qﬁd;&‘ ] flUCtuatlonS n
0O 02 04 06 08 1 0O 02 04 06 08 1 tram]ng sample
Xl Xl
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Boosted decision trees (BDT)

e Create ensemble of decision trees by reweighting events
> misclassified events are given higher weight « in subsequent tree(s)
1 —err
err
> For ensemble of N trees calculate weighted sum for ygpt(x)

[ O —

porx) = > In(a)ui(x)

> This is known as adaptive boosting (AdaBoost)
events and decision tree output are reweighted

Decision tree Forest of trees
T

a.u.

5
0.5

0.4 0.006 U\

0.3 L
0.004f

> Other boosting methods
available, e.g.

gradient boosting 0.1
bagging (resampling)

0.002}x

1L AN

N
SIS

y(X)
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Technicalities I

e TMVA workflow

> training: determine ‘forest’ structure
XML file with explicit cuts and topology

(1/N) dN/ dx

> testing: against overtraining™
independent sample(s)
Kolmogorov-Smirnov prob.

> evaluation: performance determination
(ROC curve, by default)

> validation:
stability of training?

Kolmogorov-Smirnov test: signal (back

ground) probability = 0.158 (0.127)

7"/ Signal (test sample) '~

H\\J Background (test sample)

« ‘Sighal (tralning shmple) '
e Background (training sample)

w
IIII|IIII|IIII|IIII|IIII|II

-08 -06 -04 -02 0 0.2

U/O-flow (S,B): (0.0, 0.0% / (0.0, 0.0)%

04 0.6 0.8 1
BDT response

do the cuts make sense?

| Background rejection versus Signal efficiency |

outliers anywhere?

> application in your analysis
reader (XML)
function (C++ code fragment)

Background rejection

*) “Overtraining occurs when a machine learning problem has too
few degrees of freedom, because too many model parameters
of an algorithm were adjusted to too few data points.”

TMVA
1 [ TT7T LU LI LU LU LI TTT |7

E T~ = .
09 \ e
0.8 i \\ ' i
0.7 f \\\ : f
0.6 f N f
- MVA Method: \ ]
0.5 Fisher -
- —— MLP ]
0.4 BDT k
- —— PDERS \
03 p i Tikelihood \L:
020" 01 02 03 04 05 06 07 08 09 1

Signal efficiency
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Explicit TMVA example

e CMS BY — u* i~ TMVA setup (w/o programmable variations):

// —--- load library and setup basics
TMVA: :Tools: :Instance();

TFile *oFile
TMVA: :Factory *factory

TFile: :0Open("aname.root", "RECREATE");

new TMVA::Factory("aname", oFile,

"V:!Silent:!Color: !DrawProgressBar:Transformations=I:AnalysisType=Classification");
TMVA: :Dataloader *dataloader = new TMVA::DatalLoader("dataset");

// --- setup variables and trees
dataloader->AddVariable("pt", ’F’);

d7ta10ader—>AddVariable("iso", Fr);
etc.
dataloader->AddSpectator("m", "mass", "GeV", ’F’ );

TTree *trainSg
TTree *testSg
TTree *trainBg
TTree *testBg

(TTreex)inFile->Get ("signalEventsO/events") ;
(TTree*)inFile->Get ("signalEventsl/events");
(TTree*)inFile->Get ("sidebandEvents0O/events") ;
(TTreex)inFile->Get ("sidebandEventsl/events");

dataloader->AddSignalTree(trainSg, signalWeight, TMVA: : Types: :kTraining) ;
dataloader->AddSignalTree(testSg, signalWeight, TMVA: : Types: :kTesting) ;
dataloader->AddBackgroundTree (trainBg, cbackgroundWeight, TMVA::Types::kTraining);
dataloader->AddBackgroundTree(testBg, tbackgroundWeight, TMVA::Types: :kTesting);

dataloader->PrepareTrainingAndTestTree("", "nTrain_Signal=1.e4:nTest_Signal=1.e4:nTrain_Background=1.e4\\
:nTest_Background=1.e4:SplitMode=Block:NormMode=None:V") ;

// —-—— Book, train, test, and evaluate methods

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:V:NTrees=800:BoostType=AdaBoost:AdaBoostBeta=0.5");

factory->TrainAllMethods() ;

factory->TestAl1lMethods();

factory->EvaluateAllMethods();

e timing? a few minutes
3 BDTs with 800 trees/a dozen variables/event statistics O(10%)

Urs Langenegger Aspects of MVA techniques (2018/04,/30) 12




Setup subtleties

e |t is easy to setup an MVA application

> but to get into the best possible world, care is required

e Input samples

> statistics: imbalance between background and signal not useful
> partitioning: different regions of detector/phasespace

> preselection: outliers/statistics
e Variables -

> insensitive to useless variables (but: statistics!)
> transformations

e 2 samples? 3 samples?!
— is a sideband interpolation biased?

(=2}

Kolmogorov-Smirnov test: signal (back
T

round) probability = 0.158 (0.127)

77 Sigral kst Salmple) |

m Background (test sample)

« 'sighal (tralning sdmple) T ]
ghal (training sample)

e Background (training sample)?

V0Vegy v |y Ly

Kolmogorov-Smirnov t

-1 -08 -06 -04 -02 O 02 04 06 08

1
BDT response

t: signal (back
T

round) probability = 0.158 (0.127,
T

§ H™/ /] Signal (test s‘af:b@)‘ ‘ ~ Sighal (walning skmpid) |

> training :  congrome tom sanpi)] | » sesetouns g nrpie

> testing vml :

~ application e

— especially for very delicate searches!

— TMVA does not help you, diy (e.g. evt%3==0[1,2] ) NN
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Parameter choices

e Default TMVA parameters settings are quite good
> scanning ranges will never hurt

110 8 The TMVA Methods 8.12 Boosted Decision and Regression Trees 111
Option Array Default Predefined Values Description
NTrees 800 - Number of trees in the forest
MaxDepth 3 Max depth of the decision tree allowed . | R .
Option Array Default Predefined Values Description
MinNodeSize 5% - Minimum percentage of training
events required in a leaf node (default: NegWeightTreatment - InverseBoostNeglimigeaBoostNegheigHbsy, to treat events with negative
Classification: 5%, Regression: 0.2%) IgnoreNegWeightsInTweiglitsgin the BDT training (partic-
nCuts 20 o Number of grid points in variable PairNegWeightsGloba}llar the booftmgl) : IgnoreIuTt: » n-
range used in finding optimal cut in Pray mng; Boost V\_lth mverse b(’%twel,g_h >
node splitting Pa?r GVel-ltS \vltl} negative and posltw‘e
weights in traning sample and *anni-
BoostType AdaBoost AdaBoost, Boosting type for the trees in the for- hilate* them (experimental!)
RealAdaBoost, est (note: AdaCost is still experimen- . X .
Bagging tal) NodePurityLimit - 0.5 - In boosting/pruning, nodes with pu-
AdaBoos;R2 , rity > NodePurityLimit are signal;
Grad background otherwise.
AdaBoostR2Loss Quadratic Linear, Type of Loss function in AdaBoostR2 SeparationType - GinilIndex ijossEntropy, Separation criterion for node splitting
Quadratic, G?n}lndex, X
Exponential GiniIndexWithLaplace,
MisClassificationError,
UseBaggedBoost False - Use only a random (bagged) subsam- SDivSqrtSPlusB,
ple of all events for growing the trees RegressionVariance
in each iteration. X .
DoBoostMonitor — False — Create control plot with ROC integral
Shrinkage 1 Learning rate for GradBoost algo- vs tree number
rithm
UseFisherCuts False Use multivariate splits using the
AdaBoostBeta 0.5 - Learning rate for AdaBoost algorithm Fisher criterion
UseRandomisedTrees False - Determine at each node splitting the MinLinCorrForFisher — 0.8 - The minimum linear correlation be-
cut variable only as th? best O_Ut Qf tween two variables demanded for use
a random subset of variables (like in in Fisher criterion in node splitting
RandomForests) . . K
UseExclusiveVars - False - Variables already used in fisher crite-
UseNvars 2 - Size of the subset of variables used rion are not anymore analysed individ-
with RandomisedTree option ually for node splitting
UsePoissonNvars True Interpret UseNvars not as fixed num- DoPreselection False and and apply automatic pre-selection
ber but as mean of a Possion dis- for 100% efficient signal (bkg) cuts
tribution in each split with Ran- prior to training
domisedTree option - )
RenormByClass - False - Individually re-normalize each event
BaggedSampleFraction 0.6 Relative size of bagged event sample to class to the original size after boost-
original size of the data sample (used ing
whenever bagging is used (i.e. Use- . . . . . . .
BaggedBoost, Bagging,) SigToBkgFraction — 1 — $1g to Bkg latlo. usefl in Trallnmg (sim-
ilar to NodePurityLimit, which cannot
UseYesNoLeaf True Use Sig or Bkg categories, or the pu- be used in real adaboost
rity=S/(S+B) as classification of the
leaf node -> Real-AdaBoost .
Option Table 23: Continuation of Option Table 22.

Option Table 22: Configuration options reference for MVA method: BDT. Values given are defaults. If
predefined categories exist, the default category is marked by a "x’. The options in Option Table 9 on page 60
can also be configured. The table is continued in Option Table 24.
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Optimization workflow

e Prerequisites
> code setup to allow changing ‘everything’ from the command line

> preselection of training/testing trees/files
> variables
> ranges and steps of BDT parameters to optimize

e Operationally
> run on cluster with worker nodes

— distribute training/testing files to local /scratch disks
> abort individual trainings asap

— define minimum criteria and calculate required ingredients
e KS-probability
e sensitivity
e similarity of y(x) distribution

= (O(10%) jobs
sometimes several iterations
(but this also applies to (random) grid searches, etc)

Urs Langenegger Aspects of MVA techniques (2018/04,/30)
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BDT technical evaluation

e error fraction
> unboosted (original) events

> for ‘difficult’ events — 0.5 § i

e boost weight c :
> remember its definition? Z :

e # tree nodes B R T OB T T R T VBT R T T
#tree

> w/ or w/o leaf nodes
> depends on depth of BDT

boost weight
o
9]

0 E
200F ]
S 0.4 =
& 180F weighted .
S 160F unweighted 0.2 =
%) e A, PR e A
5 40 - O ~"507 100 150 200 250 300 350 400
% 120 Pl
— 100} Pl 0 T
S r % 25
5 80 N A 8 -
o) F i
g 60? . | g 20
=z 40; _______ EYS 15t
20 i 2
OE--‘"-: n I\_\ I \ L1 \ I ;“-\"- [ 10_
0 2 4 6 8 10 g
(intermediate) BDT Nodes 0 50 100 150 200 250 300 350 400

Htree
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BDT validation of variables

e Check (from XML file) 7 196\ cighted
. ) = loof ichted
> distribution of cuts Lk S
- - ak ii
> usage of varlable.s in trees 2 gOP,LJLjL [ |
> variable correlations fis3d cut
> variable power 5 o
docatfk -28 §
e S oy S -y
S oo iso cut
.gn iso B 1E
Ly © 12f
alpha ps 10F
fls3d 3
-100 'g 6‘
S 4 [
Z  2F o
“0”“42 “lin""é 8 mﬂllo
chi2dof cut

=}
@
K

alpha
pvips

eta

chi2dof
maxdoca

N(decision trees)

& 005 01 015 02
docatrk cut

N(decision trees) N(decision trees)

N(decision trees)

0.05 01045 0205503

alpha cut

0.6 0.8 1
mliso cut

30F
25E
20F
15F
10F

a1

o

» ’L ananﬂﬂu" Al
~2 -1 0 1 2

eta cut

fiszd [T
pvips

mliso

m2iso

chi2dof
pvip

docatrk

BDT Variables
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Data/MC validation

e MC simulation description of data
> check variable distributions for specific C

> check y(x) for various preselections

e Samples to compare?
> background MC with background data

> ‘control’ samples
e identical topology as signal not mandatory

— calculate variables correspondingly

16000
14000

12000¢
10000;
8000"
6000"
4000
2000

16000
14000

120007
10000F
8000"
6000
4000¢

CMS L=20f?*({s=8TeV)

FB - JuK'

[ e data

[ NYMC simulation

PR R ANANN S

-1 -0.5 0 0.5 1
BDT

CMS L=20fb" (/s=8TeV)

F B = JWK*

[ o data

[ NIMC simulation

45000§Ms L=20fb"({s=8TeV) eMsS L=20fb'({s=8TeV) CMS L=20fb'(/s=8TeV) 20002
g . . 220 . . 60000 . . 1 s s T
2 B - JyK g B - JyK C B" - JipK
40000; e data 200 e data q - e data BDTsell
35000? K\YMC simulation 128? K\YMC simulation 50000;’ K\YMC simulation 16000CMS L= 2010 ((3= 8 TeV)
30000; 140; 40000} 14000; B" —~ Jy K"
C E [ edata
25000* F b [ NIMC simulation
f 1201 30000" 12000
200002 100F C 10000F
15000 80? 200000 8000~
10000} igg : 6000
5000 2oL 10000k 4000-
N\ NN\ g N 2000
0 50 | 1/000(| ) 0 0.5 _ _ 0 S et e
30’ O isolation dz, [cm] BDTsel?
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‘Control’ samples

e ‘Candidate’ variables are ‘trivial’
> dimuon  BY — ptpu~
> BT > JY K™ — utu K+
e degrees of freedom
> restrict to subset (dimuon vtx)
> renormalize (x?*/dof)

e ‘environment’ variables:
> do not include

CMS L=20f"'({s=8TeV)

‘candidate’ tracks 22000¢
20000 B -~ WK’
- e data
18000; NIMC simulation
16000}
// ‘ 14000f
12000

) 10000
y 8000

K 6000;
e y(x) will look different: 400

> different topology %

> does not matter!

CMS L=20fb"(/s=8TeV)

9000? Dimuon

8000F © data sidebagds
7000
6000
5000
4000
3000"
2000}
1000¢
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Systematics

e One number/event allows systematic studies £ oz
> dependence of y(x) distribution vs. key variables

e Generate signal MC with different
> mass, lifetime, . ..

e quantification of systematics?
> reweighing for data/MC differences

> e.g. different ‘cut’ efficiency in data/MC
(control samples)

—~
0

-0.1-
0 Zi p0 = 0.0630 + 0.0003

-0.4

0.4, CMS L=20fb"(/s=8TeV)

r (nmirl >10)

0.2¢
0.1-
OF

"L x®dof = 34.9/ 15 (pol0)

_0.3F PO = 0.0592 + 0.0009
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Outlook

e There is no magic involved in supervised machine learning
> it will not ruin your analysis

> it will not save you
> it will boost your sensitivity by O(20%), compared to ‘good’ cuts

e Disclaimers
> garbage in, garbage out
> you control the training and validation

> performance differences between ANN/BDT/. . . normally smaller
than other factors

e Many ways to test/optimize/validate any MVA setup
> absolutely required

e More information, e.g.
> tmva.sourceforge.net

> http://tmva.sourceforge.net/talks.shtml and references in there
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