

The Development of a High Brightness Muonium Beam

Narongrit Ritjoho on behalf of Muonium collaboration

What is Muonium ?

- Muonium is a bound state of an antimuon and an electron
- Hydrogen-like atom
- Unstable atom with lifetime 2.2 µs
- Pure leptonic system (1st and 2nd generations)
- No finite size and nuclear effect

How to produce Muonium ?

Pictures : https://www.psi.ch/media/the-psi-proton-accelerator

History of Muonium

Now? Superfluid-He thin film

Muonium formation processes

D.G. Eshenko, Phys. Rev. B 66, 035105 (2002)

Superfluid-helium thin film target

- $\bullet~$ Mu experiences a positive chemical potential inside SFHe, E/k_b $\sim 270~$ K
- Mu will be emitted out of the surface of a SFHe thin film with mono-energetic energy and narrow divergence

- Muon spin rotation (muSR) technique
- $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$
- Due to parity violation of weak decay, the direction of emitted positron is distributed asymmetrically with respect to the spin of muon

- Muon spin rotation (muSR) technique
- $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$
- Due to parity violation of weak decay, the direction of emitted positron is distributed asymmetrically with respect to the spin of muon

- Muon spin rotation (muSR) technique
- $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$
- Due to parity violation of weak decay, the direction of emitted positron is distributed asymmetrically with respect to the spin of muon

- Muon spin rotation (muSR) technique
- $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$
- Due to parity violation of weak decay, the direction of emitted positron is distributed asymmetrically with respect to the spin of muon

Previous Studies of Muonium in Superfluid-Helium

- The previous study of Mu formation rate in bulk-SFHe shows a high formation rate depending on temperature(T) and mixtures of heliums
- Mu production rate depends on the mobility of muons inside the SFHe

We will also test the <u>electric(E)</u> and <u>magnetic(B)</u> field effect of the Mu formation rate

Experimental Setup

• Design of a SFHe container

• Stopping distribution of muon in SFHe by G4beamline

- Momentum = 31.5 MeV/c
- Mean_stop = 2.88 mm from Ti foil
- RMS_z = 0.70 mm
- 97.5% of mu+ stopped in SHe

³He - ⁴He dilution refrigerator

- 16-

Experiment

November 2017, PiE1 area at PSI

- Empty cell
- Muon stopped at the silver electrode
- Muon decay asymmetry at B = 50 G
- $A_{\mu} = 0.0555 \pm 0.0015$

- Full cell with superfluid He-4, T = 0.5K
- Muon stopped in the superfluid and formed muonium
- Muonium decay asymmetry at B = 1.6 G
- $A_{Mu} = 0.0136 \pm 0.0005$

- Full cell with superfluid He-4, T = 0.5K
- Muon stopped in the superfluid and formed muonium
- Muonium decay asymmetry at B = 50 G
- Disappearance of muon signal

- Scanned Parameters
 - Temperature
 - Electric field (Voltage)
 - Magnetic field
 - Which configuration will give the highest yield of Mu ?

- Temperature scan
- First measurement of muonium formation in SFHe at T<0.5K

- Voltage scan
- Perform the electric field scan at low temperature 0.26 K
- Muonium formation rate decreases when the voltage increases

- Voltage scan
- Perform the electric field scan at low temperature 0.26 K
- Muonium formation rate decreases when the voltage increases

Conclusions

- The first measurement of the Mu formation rate was done at T<0.5 K
- The highest Mu formation rate is at T=0.7 K
- The Mu formation rate at lower temperature is still reasonably high
- An applied electric field prevents the muonium formation rate

Next episode...

• In this year, our experimental goal is to measure emission of muonium into vacuum from SFHe

ETH ZÜRICH

ALDO ANTOGNINI* PAOLO CRIVELLI KLAUS KIRCH* DAVID TAQQU

PAUL SCHERRER INSTITUTE

MAREK BARTKOWIAK ANGELA PAPA NARONGRIT RITJOHO ANDREAS KNECHT ANNA SOTER DAVID ROUSSO" ROBERT SCHEUERMANN

UNIVERSITY OF CAMBRIDGE

MICHAEL DE VOLDER

ILLINOIS INSTITUTE OF TECHNOLOGY

THOMAS PHILLIPS DANIEL KAPLAN

* also affiliated with PSI

ⁿ student from University of Waterloo, Canada

BACK UP

Trajectory selection by collimation: large losses in atom number!

- Increasing intensity: series of collimators = gratings.
- Effects of gravity: vertical shift in the periodic pattern of shadows
- If this effect is small, small grating period (d) needed

Challenging: Mu falls less than 1 nm during its few us flight!

New concept: nanostructured targets coated with SFHe

- Large µ⁺ stopping power and surface area for Mu escape
- SFHe film prevents atoms sticking to the wall

e.g. coating mesoporous SiO₂ with SFHe?

New concept: nanostructured targets coated with SFHe

- Large µ⁺ stopping power and surface area for Mu escape
- SFHe film prevents atoms sticking to the wall

CNT forest (h ~ 500 um)

The potential of SFHe coated CNT forests

significant stopping power in SFHe vs carbon

forest: ~5% graphite density, quasi-ordered structure - fast Mu escape?

Prefabricated holes for better Mu extraction And, the possibility for:

Free-standing structures for back-implantation

