

Wojtek Hajdas :: LTP/ DIAPP :: Paul Scherrer Institut

Applied Particle Physics - Irradiation Facilities for Components Testing at PSI

LTP Monday Seminar 25.06.2018

- 1. Spacecraft environments and radiation in space
	- a. European Components Irradiation Facilities
	- b. Why PSI and why protons? 1st latch-up in space
- 2. Radiation effects …general
- 3. Radiation hardness test definition
- 4. ESA test methods / radiation hardness characterization
- 5. Effects examples from two missions: Galileo and POLAR
- 6. Space radiation environment: solar, cosmic, trapped, Jovian
- 7. Models vs. reality / example from RHESSI
- 8. PSI exposure facilities for radiation effects
	- a. Accelerators
	- b. Protons PIF
	- c. Electrons EMON
	- d. Electrons piM1
- 9. Detection system and dosimetry
	- a. Standard detector technology
	- b. New developments / Propix II (m)
	- c. PSI detectors for space RADEM (m)
- 10. Operation and users

Spacecraft environment

Spacecraft environment

- **Pre-operational and Operational**
- **Launch phase**
	- Vibration
	- Acoustics
	- Shock and acceleration
	- Thermal
	- Pressure
- **Operational**
	- **Solar radiation**
	- **Ionizing radiation**
	- **Charging**
	- **Meteorites**
	- Debris
	- Thermal
	- Earth orbit environment

European Components Irradiation Facilities

ECIF for studies of radiation effects in lab

- HIF / Belgium
- RADEF / Finland
- PIF / Switzerland
- CASE / The Netherlands

Other European Sites:

- *TSL / Uppsala / Sweden*
- *GANIL / France*
- *GSI, COSY / Germany*
- *AGOR / The Netherlands*
- *Catania*

…

Why PSI, why protons? 1st Latch-up in space

- Earth Resource Satellite launched in July 1991 into 784 km orbit
- The Precision Range and Range Rate Equipment shuts down 5 days later
- Reason 9W overcurrent lasting 32s; the instrument did not restart anymore
- Switch-off occurred at the South Atlantic Anomaly
- ESA, PSI (R. Henneck) and University of Stuttgart exposed PRARRE to protons at OPTIS
- System behavior confirmed and latch-up found in CMOS RAM (at $F^{\sim}3.10^7$ p/cm²!)

Radiation effects … broad view

Relevant for tests at PSI

Single Event Effects **SEE**

- Mostly in nuclear processes
- Critical charge
- Sensitive volume

Displacement Damage **DD**

- Lifetime damage
- Carrier removal
- Mobility

Radiation hardness test definition

ESTEC - EUROPEAN SPACE RESEARCH AND TECHNOLOGY CENTRE

ECSS - EUROPEAN COOPERATION FOR SPACE STANDARDAZATION

• Standard documents

Radiation test specifications and procedures

ECSS-Q-ST-70-06C Annex B

Radiation test report

ECSS-Q-ST-70-06C Annex C

Request for radiation test

ECSS-Q-ST-70-06C Annex A

- Applicable documents
	- Single Event Effects Test Method and Guidelines
	- Total Dose Steady-state Irradiation Test Method
	- Radiation Design Handbook

Example-1 of effects in space – Galileo

Galileo - NASA mission to Jupiter Launch 1989, operation 1995 – 2003 Most instruments affected by radiation Displacement Damage:

- *- Dark current*
- *- Response uniformity*
- *- Electronic chain degradation*
- *- Sensor current consumption etc.* Single Event Effects:
- *- Upsets*
- *- Transients*
- *- Latch-ups*
- *Stacked bits etc.*

In the meantime things just … evaluated

Example-2 of effects in space – POLAR

POLAR – novel hard X-ray polarimeter (CH-CN)

- Launched in Sep 2016 on Chinese TG2
- Goal polarimetry of Gamma Ray Bursts (linked to GW)
- PSI electronics onboard: Frontends and Central Unit
- High Voltage unit lost on 31.03.2017 catastrophic failure
- Location at SAA boarder
- Reasons unclear: charging, protons …

(see polar.psi.ch , POLAR PSI Data Center by Hualin Xiao)

chain temp

Space radiation environment

Real, dynamic, wide-ranging and costly

Solar Events

Solar energetic particles

Geo-storms; particle injections

Trapped Radiation

Proton belt Electron belts South Atlantic Anomaly Human made

Cosmic Rays

Galactic

Anomalous

Jupiter Radiation Environment

Hot Plasma

Testing on ground is indispensable

Solar flares Electron rich Lasting hours **Coronal mass ejections** Proton rich Lasting days

Solar energetic particles can cause doses of even ~10 krad

See e.g. srem.web.psi.ch for observations of PSI designed ESA Standard Radiation Environment Monitor SREM

Galactic Cosmic Rays GCR

Low intensities High penetration High energies > GeV/n High LET $> 10⁴$ MeV/g/cm²

Anomalous Cosmic Rays ACR

Reaching tens MeV/n Weakly ionized

- GCR mainly responsible for Single Events Effects
- In longer missions also for Displacement Damage and Total Ionizing Dose effects
- ACR effects often negligible

GRC iron spectra behind Al-shielding

GRC LET spectra with two different ranges of elements

Trapped protons I.

Proton Radiation Belt and South Atlantic Anomaly SAA

- Partially responsible for Single Event Effects
- Major agent for Displacement Damage
- Energies above hundred MeV
- Shielding partly effective
- Typical doses \sim 10 rad/day
- Peak energies after shielding ~50-60 MeV
- Proton belt is relatively stable

AP8MIN omnidirectional proton flux (p/cm² /s)

Proton spectra behind Al-shielding (97 inc., 500 km)

Trapped protons II.

Proton Radiation Belt and South Atlantic Anomaly SAA

- SAA dominates at low altitudes and inclinations
- Caused by offset and tilt between geo-magnetic axis and Earth rotation axis
- The belt is intruding to lower altitudes
- Both protons and electrons are present
- *ISS also crosses SAA (fast passage ~20%)*

Magnetic field contours for 500 km altitude

TG2 Radiation monitor rate map with SAA (6.3.2017)

Radiation Belts:

inner, outer and SAA

- Major agent for total ionizing dose
- Energies up to few MeV
- Highly dynamic, sensitive to storms
- Extends behind GEO orbit
- Shielding effective (local, thin plates)
- Typical doses \sim 10 rad/day
- Causes bremsstrahlung

Electrons flux data from NOAA satellites (E>1MeV)

AE8 model omnidirectional electron flux (e/cm² /s)

Jupiter radiation environment

Models vs. reality / example from RHESSI

ECSS Standard models

- AE8 trapped electrons
- AP8 trapped proton

- Static, isotropic models based on limited dataset for solar minimum and maximum - Not suited for low altitude and inclination ESA estimated accuracy at factor of 2-3

New development – AE9 and AP9

- with uncertainties and errors in data
- based on probabilities with Monte Carlo Tend to predict higher fluxes than AP8/AE8

Comparison of AX8 and AX9 models for LEO orbit

Electron rate in RHESSI monitor vs. rotation angle

PSI exposure facilities for radiation effect studies

- Proton Irradiation Facility operates continuously since 1992
- Connected to COMET cyclotron of the Proton Therapy Center
- Priorities given by patient exposure plan
- Other exposure sides and particles are also utilized:
	- $-$ piM1 secondary beam area with electrons, pions and protons
	- $-$ Electron mono-chromator with monoenergetic electrons from beta sources
- Main functions:
	- User-lab for radiation effects studies in electronics
	- Realistic simulator of space radiation environment
	- $-$ Source of mono-energetic particles for rad-tests
	- Calibration station for monitors and detectors
	- Radiation qualification for space technologies

NA area with COMET cyclotron and exposure sites

COMET Compact Medical Therapy Cyclotron

- Facility of the PSI Proton Therapy Center
- Designer H. Blosser, MSU/USA
- Delivered by VARIAN
- 250 MeV fixed energy
- Mass 90 tons
- Intensity range 0-1000 nA
- In operation since 2007

Proton Irradiation Facility

- Initial energies: 230, 200, 150, 100, 74 MeV
- Energies after degrader: 230 MeV to 6 MeV
- Max intensity: 2 nA ($E > 200$) 10 nA ($E < 100$)
- Flux range $10^2 2.10^8$ p/sec/cm²
- Profiles Gaussian-like: FWHM 9 cm
- Max beam diameter of 90 mm
- Options: focused (6 mm ϕ) or flat beam
- User adapted dosimetry and test flow
- Standard calibrations runs and checks / fluxes, profiles, scaling

Electron monochromator

- Simple bending magnet and strong electron source in large vacuum chamber
- Flux control system constructed; Si-detector with dedicated DAQ
- XY-table with remote sample control; support with TV cameras and illumination
- Two units:
	- PSI
	- ESTEC

Si-sensor and DAQ system (left) Monochromator chamber (right)

Intensity curve for 90Sr source; Sidetector 2 cm from beam exit

High energy electrons in piM1 I.

- Adapting secondary beam area piM1 of PSI large cyclotron
- Positive and negative particles possible
- Clean electrons beams from about 10 MeV up to 100 MeV
- Protons available up to 70 MeV
- Pions and muons from 100 MeV/c to 350 MeV/c

piM1 Test area: beam exit and PIP-JUICE setup Beam contamination level as function of momentum

High energy electrons in piM1 II.

- Typical intensities: $2.10^5 1.10^7$ /s and fluxes: $2.10^3 5.10^5$ /cm²/s
- FWHM between 4 cm and 10 cm
- Well suited for studies of instrument shielding and calibration
- Too low fluxes for TID tests; other test areas studied

Electron beam parameters in piM1 area.

Electron flux vs. momentum

Detector technology and dosimetry

- Plastic or Silicon detector to calibrate the beam
- Real time dosimetry uses two ionization chambers IC
- Profiles are measured with pixelated IC, plastic scans or luminescence foils

Dosimetry I. ESA SEU Monitor

- Developed in 2005 by R.H. Sorensen (ESA-ESTEC) and HIREX
- Based on ATMEL AT60166F 16Mbit SRAM, version 2009
- Carefully calibrated at ESA facilities; tens of units at different test sites
- Easy comparison of measured and expected flux values

Dosimetry II. new PIF pixel ionization chamber

- Standard ionization chamber components
- Sensitive, improved readout electronics
- Easy data acquisition system
- Easy setup and operation
- Fast beam profiling
- Very wide dynamic range

Dosimetry II. new PIF pixel ionization chamber

- Standard ionization chamber components
- Sensitive, improved readout electronics
- Easy data acquisition system
- Easy setup and operation
- Fast beam profiling
- Very wide dynamic range

Detector technology I. RADEM for ESA JUICE

Radiation Hard Electron Monitor RADEM

RADEM EM currently at PSI for particle tests Final delivery – December 2019

Detector technology II. RADEM for ESA JUICE

Detector technology II. RADEM for ESA JUICE

PAUL SCHERRER INSTITUT

 \blacksquare

RIME antenna PEP/NU PEP/JENI **RADEM RIME/Matching network** $SAS + Z$

Operation and users I.

- Operation: weekends and nights; usually 2-3weekends/month
- Flexible, user-specific test arrangement
- Fast, uncomplicated set-up and operation
- Automated irradiations
- Standard sample frame (as at HIF, RADEF and Brookhaven)
- Irradiation usually in air
- Typical laboratory apparatus available (also vacuum chambers)

Statistics for 2017

Operation and users II.

Wir schaffen Wissen – heute für morgen

