Phenomenology of a doubly charged scalar

Margherita Ghezzi

PAUL SCHERRER INSTITUT

Mainly based on:

Crivellin, MG, Panizzi, Pruna, Signer, in preparation

LTP Seminar, PSI, 25.06.2018

Outline

Introduction

- 2 The Effective Field Theory approach to BSM
- 3 Low energy: limits, EFT and the matching
- 4 High energy: searches at the LHC
- 5 High energy: future colliders

Introduction: masses for the neutrinos

The seesaw mechanism

Type II

Type I

SM singlet fermions

SM triplet scalars

SM triplet fermions

Type III

Fig. from Abada, Biggio, Bonnet, Gavela and Hambye JHEP 0712 (2007) 061

The doubly charged scalar from the $SU(2)_L$ -triplet scalar

Type-II see-saw model

$$\Delta = \begin{pmatrix} S^+ & \sqrt{2}S^{++} \\ \sqrt{2}S^0 & -S^+ \end{pmatrix}$$
$$< \Delta >_0 = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$$

Yukawa term with the triplet:

$$\Delta \mathcal{L}_{Y} = f_{ij}L_{i}^{T}C^{-1}i\tau_{2}\Delta L_{j} + \text{h.c.}$$

Majorana mass term for neutrinos:

$$m_{ij}\bar{\nu}_{iL}^{c}\nu_{jL}$$
 $m_{ij} = w f_{ij} = m_{ji}$

T. P. Cheng and L. F. Li, Phys. Rev. D 22 (1980) 2860

W. Grimus, R. Pfeiffer and T. Schwetz, Eur. Phys. J. C 13 (2000) 125

E. Ma, M. Raidal and U. Sarkar, Nucl. Phys. B 615 (2001) 313

A. G. Akeroyd and M. Aoki, Phys. Rev. D 72 (2005) 035011

The doubly Charged $SU(2)_L$ -singlet scalar

Zee-Babu model

- SM + 2 $SU(2)_L$ -singlet scalars:
 - a singly charged scalar which couples to left-handed leptons: h^{\pm}
 - a doubly charged scalar which couples to right-handed leptons: $k^{\pm\pm}$

It generates mass terms for the neutrinos at two loops:

A. Zee, Nucl. Phys. B 264 (1986) 99

K. S. Babu, Phys. Lett. B 203, 132 (1988)

M. Nebot, J. F. Oliver, D. Palao and A. Santamaria, Phys. Rev. D 77 (2008) 093013

The doubly Charged $SU(2)_L$ -singlet scalar

Minimal model for neutrino masses

SM + 1 $SU(2)_L$ -singlet doubly charged scalar: $S_R^{\pm\pm}$

It couples only with right-handed charged leptons:

$$\Delta \mathcal{L} = (D_{\mu}S^{++})^{\dagger} (D^{\mu}S^{++}) + \left(\lambda_{ab} \overline{(\ell_R)^c_a} \ell_{Rb} S^{++} + \text{h.c.}\right)$$
$$+ \lambda_2 (H^{\dagger}H) (S^{--}S^{++}) + \lambda_4 (S^{--}S^{++})^2 + [\text{inv.}]$$

 λ_{ab} consist of 6 independent complex parameters and allow for LFV processes.

S. F. King, A. Merle and L. Panizzi, JHEP 1411 (2014) 124

The doubly charged $SU(2)_L$ -singlet scalar

Neutrino mass terms are generated at three loop:

EFT approach:

$$\frac{\xi}{\Lambda^{3}}S^{--}\left[H^{+}H^{+}\left(D_{\mu}H^{0}\right)\left(D^{\mu}H^{0}\right)-2H^{+}H^{0}\left(D_{\mu}H^{+}\right)\left(D^{\mu}H^{0}\right)+H^{0}H^{0}\left(D_{\mu}H^{+}\right)\left(D^{\mu}H^{+}\right)\right]+h.c.$$

S. F. King, A. Merle and L. Panizzi, JHEP 1411 (2014) 124

Outline

Introduction

2 The Effective Field Theory approach to BSM

- 3 Low energy: limits, EFT and the matching
- 4 High energy: searches at the LHC
- 5 High energy: future colliders
- 🗿 Summary

The Effective Field Theory approach to BSM: SMEFT

The SM can be seen as an effective theory valid up to some high scale Λ and it can be extended to include higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{SM} + rac{1}{\Lambda} \sum_{k} c_k^{(5)} \mathcal{Q}_k^{(5)} + rac{1}{\Lambda^2} \sum_{k} c_k^{(6)} \mathcal{Q}_k^{(6)} + \mathcal{O}\left(rac{1}{\Lambda^3}
ight)$$

Assumptions:

- The dynamical degrees of freedom at the EW scale are those of the SM
- The $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge group must be contained in the EFT
- New Physics appears at some high scale $\Lambda >> v$ (decoupling)
- Absence of mixing of new heavy scalars with the SM Higgs doublet

The SMEFT

Warsaw basis

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\tilde{G}}$	$f^{ABC} {\widetilde G}^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\overline{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$	
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{\mu} d_{r})$	
$Q_{\varphi \overline{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

- 15 bosonic operators
- 19 single-fermionic-current operators

$(\overline{L}L)(\overline{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$Q_{duq} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_k^{\gamma j})^T C l_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$O^{(3)}$	$(\overline{l}_{i}\sigma_{i}\sigma_{j}) = u(\overline{c}^{k}\sigma^{\mu\nu}u)$	0.	$\epsilon^{\alpha\beta\gamma} \left[(d^{\alpha})^T C u^{\beta} \right] \left[(u^{\gamma})^T C c_{\gamma} \right]$			

 25 four-fermion operators (assuming baryonic number conservation)

15+19+25=59 independent operators (for 1 fermion generation)

Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085

Margherita Ghezzi (PSI)

The doubly charged scalar

PSI, 25.06.2018 11 / 33

The SMEFT beyond the tree level

Running and mixing of Wilson coefficients

$$ar{c}_i(\mu) = \left(\delta_{ij} + \gamma^{(0)}_{ij} \; rac{g^2_{SM}}{16\pi^2} \log \left(rac{\mu}{M}
ight)
ight) ar{c}_j(M)$$

- Compared to the SM, additional logarithmic divergences are present;
- these divergences are absorbed by the running of the coefficients of the local operators;
- the matrix $\gamma_{ii}^{(0)}$ mixes the coefficients;
- the only one-loop diagrams which generate logarithmic divergences are the ones containing one insertion of effective vertices;
- a selection of the operators *a priori* is not possible;
- the coefficients must be evaluated at the scale of the experiment!

Outline

Introduction

The Effective Field Theory approach to BSM

3 Low energy: limits, EFT and the matching

- 4 High energy: searches at the LHC
- 5 High energy: future colliders
- 🔊 Summary

The low-energy Effective Field Theory

Margherita Ghezzi (PSI)

The low-energy effective Lagrangian

Dipole						
$Q_{e\gamma}$	$em_r(\bar{l}_p\sigma^{\mu\nu}P_Ll_r)F_{\mu\nu}$ + H.c.					
	Scalar/Tensorial	Vectorial				
Q_S	$(\overline{l}_p P_L l_r)(\overline{l}_s P_L l_t) + \text{H.c.}$	$Q_{VLL} \qquad (\bar{l}_{p}\gamma^{\mu}P_{L}l_{r})(\bar{l}_{s}\gamma_{\mu}P_{L}l_{t})$				
		Q _{VLR}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_R l_t)$			
		Q _{VRR}	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{l}_s \gamma_\mu P_R l_t)$			
$Q_{Slq(1)}$	$(\overline{l}_{p}P_{L}l_{r})(\overline{q}_{s}P_{L}q_{t}) + \mathrm{H.c.}$	<i>Q_{VlqLL}</i>	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{q}_s \gamma_\mu P_L q_t)$			
$Q_{Slq(2)}$	$(\overline{l}_p P_L l_r)(\overline{q}_s P_R q_t) + \text{H.c.}$	Q_{VlqLR}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			
Q_{Tlq}	$(\bar{l}_{\rho}\sigma^{\mu\nu}P_{L}l_{r})(\bar{q}_{s}\sigma_{\mu\nu}P_{L}q_{t}) + \text{H.c.}$	Q _{VlqRL}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_L q_t)$			
		Q _{VlqRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			

Dimension-six operators that allow for effective leptonic transitions below the EW scale

Low-energy effective Lagrangian and the matching

Feynman diagrams representing the UV-complete contributions that match to the dipole and four-fermion operators:

Low-energy effective Lagrangian and the matching

Dipole						
$Q_{e\gamma}$	$em_r(\bar{l}_p\sigma^{\mu\nu}P_L l_r)F_{\mu\nu}$ + H.c.					
	Scalar/Tensorial	Vectorial				
Q_S	$(\overline{l}_p P_L l_r)(\overline{l}_s P_L l_t) + \text{H.c.}$	Q _{VLL}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_L l_t)$			
		Q_{VLR} $(\bar{l}_{ ho}\gamma^{\mu}$				
		<i>Q_{VRR}</i>	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{l}_s \gamma_\mu P_R l_t)$			
$Q_{Slq(1)}$	$(\overline{l}_p P_L l_r)(\overline{q}_s P_L q_t) + \text{H.c.}$	<i>Q_{VlqLL}</i>	$(\bar{l}_{ ho}\gamma^{\mu}P_{L}l_{r})(\bar{q}_{s}\gamma_{\mu}P_{L}q_{t})$			
$Q_{Slq(2)}$	$(\overline{l}_p P_L l_r)(\overline{q}_s P_R q_t) + \text{H.c.}$	Q_{VlqLR}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			
Q_{Tlq}	$(\bar{l}_{p}\sigma^{\mu\nu}P_{L}l_{r})(\bar{q}_{s}\sigma_{\mu\nu}P_{L}q_{t}) + \text{H.c.}$	Q _{VlqRL}	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{q}_s \gamma_\mu P_L q_t)$			
		Q _{VlqRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			

$$C_{VRR}^{prst}(m_W) = \frac{\lambda_{rt}\lambda_{ps}^*}{2}$$
$$C_{e\gamma}^{pr}(m_W) = \frac{1}{24\pi^2}\sum_{w=1}^3 \left(\lambda_{rw}\lambda_{pw}^*\right)$$

Margherita Ghezzi (PSI)

Low-energy effective Lagrangian and the matching

Dipole						
$Q_{e\gamma}$	$em_r(\bar{l}_p\sigma^{\mu\nu}P_L l_r)F_{\mu\nu}$ + H.c.					
	Scalar/Tensorial	Vectorial				
Q_S	$(\overline{l}_p P_L l_r)(\overline{l}_s P_L l_t) + \text{H.c.}$	Q _{VLL}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_L l_t)$			
			$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_R l_t)$			
		<i>Q_{VRR}</i>	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{l}_s \gamma_\mu P_R l_t)$			
$Q_{Slq(1)}$	$(\overline{l}_{\rho}P_{L}l_{r})(\overline{q}_{s}P_{L}q_{t}) + \mathrm{H.c.}$	<i>Q_{VlqLL}</i>	$(\bar{l}_{ ho}\gamma^{\mu}P_{L}l_{r})(\bar{q}_{s}\gamma_{\mu}P_{L}q_{t})$			
$Q_{Slq(2)}$	$(\overline{l}_{\rho}P_{L}l_{r})(\overline{q}_{s}P_{R}q_{t}) + \mathrm{H.c.}$	Q_{VlqLR}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			
Q_{Tlq}	$(\bar{l}_{\rho}\sigma^{\mu\nu}P_{L}l_{r})(\bar{q}_{s}\sigma_{\mu\nu}P_{L}q_{t}) + \text{H.c.}$	Q _{VlqRL}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_L q_t)$			
		Q _{VlqRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_R q_t)$			

$$C_{VRR}^{prst}(m_W) = \frac{\lambda_{rt}\lambda_{ps}^*}{2}$$
$$C_{e\gamma}^{pr}(m_W) = \frac{1}{24\pi^2}\sum_{w=1}^3 \left(\lambda_{rw}\lambda_{pw}^*\right)$$

Margherita Ghezzi (PSI)

Low-energy effective Lagrangian and the matching Branching ratios at the physical scale

$$\mathrm{BR}(I_{\rho}^{\pm} \to I_{r}^{\pm}\gamma) = \frac{\alpha \, m_{\rho}^{5}}{m_{\phi}^{4} \Gamma_{\rho}} \left| C_{e\gamma}^{rp}(m_{\rho}) \right|^{2}$$

$$BR(I_{\rho}^{\pm} \to I_{r}^{\pm}I_{s}^{\mp}I_{t}^{\pm}) = \frac{m_{\rho}^{5}}{(1+\delta_{rt})6m_{\phi}^{4}\Gamma_{\rho}} \left[\frac{1}{2(4\pi)^{3}} \left(8 \left| \frac{C_{VRR}^{prst}(m_{\rho})}{V_{RR}} \right|^{2} + \left| \frac{C_{VRL}^{prst}(m_{\rho})}{\sqrt{2}} \right|^{2} \right) + \frac{\delta_{st}\alpha^{2}}{\pi} \left| \frac{C_{e\gamma}^{rp}(m_{\rho})}{\sqrt{2}} \right|^{2} (4(1+\delta_{rs})\log(m_{\rho}/m_{s}) - 6 - 5\delta_{rs}) \right]$$

$$\mathrm{Br}_{\mu \to e}^{\mathrm{N}} = \frac{m_{\mu}^{5}}{4 \, m_{5}^{4} \Gamma_{\mathrm{capt}}^{N}} \left| e(m_{\mu}) C_{e\gamma}^{12}(m_{\mu}) \, D_{N} + 4 \left(\tilde{C}_{VR}^{(p)}(m_{\mu}) \, V_{N}^{(p)} + p \to n \right) \right|^{2}$$

$$\begin{split} \tilde{C}_{VR}^{(p',n)} &= \sum_{q=u,d} \left(C_{VlqRR}^{12qq} + C_{VlqRL}^{12qq} \right) f_{Vp,n}^{(q)} \\ f_{Vp}^{(u)} &= 2 \quad f_{Vn}^{(u)} = 1 \quad f_{Vp}^{(d)} = 1 \quad f_{Vn}^{(d)} = 2 \\ D_{Au} &= 0.189 \quad V_{Au}^{(p)} = 0.0974 \quad V_{Au}^{(n)} = 0.146 \end{split}$$

Margherita Ghezzi (PSI)

Current low-energy experimental limits

$$\begin{array}{rcl} {\rm Br} \left[{\tau ^ {\mp } \to e^ {\mp } e^ {\pm } e^ {\mp } } \right] & \leq & 1.4 \times 10^ {-8} \\ {\rm Br} \left[{\tau ^ {\mp } \to \mu ^ {\mp } \mu ^ {\pm } \mu ^ {\mp } } \right] & \leq & 1.2 \times 10^ {-8} \\ {\rm Br} \left[{\tau ^ {\mp } \to e^ {\mp } \mu ^ {\pm } \mu ^ {\mp } } \right] & \leq & 1.6 \times 10^ {-8} \\ {\rm Br} \left[{\tau ^ {\mp } \to \mu ^ {\mp } e^ {\pm } \mu ^ {\mp } } \right] & \leq & 9.8 \times 10^ {-9} \\ {\rm Br} \left[{\tau ^ {\mp } \to \mu ^ {\mp } e^ {\pm } e^ {\mp } } \right] & \leq & 1.1 \times 10^ {-8} \\ {\rm Br} \left[{\tau ^ {\mp } \to e^ {\mp } \mu ^ {\pm } e^ {\mp } } \right] & \leq & 8.4 \times 10^ {-8} \\ {\rm Br} \left[{\mu ^ {\mp } \to e^ {\mp } e^ {\pm } e^ {\mp } } \right] & \leq & 1.0 \times 10^ {-12} \end{array}$$

 $\mathcal{P}(\bar{M} - M) = 2.4 \times 10^{-10}$ (for right-handed currents)

 $\mathrm{Br}^{\mathrm{Au}}_{\mu
ightarrow e} \leq 7 imes 10^{-13}$

$\operatorname{Br}\left[\tau \to \mathbf{e}\gamma\right]$	\leq	$3.3 imes 10^{-8}$
$\operatorname{Br}\left[\tau \to \mu\gamma\right]$	\leq	4.4×10^{-8}
$\operatorname{Br}\left[\mu \to \boldsymbol{e}\gamma\right]$	\leq	4.2×10^{-13}

SINDRUM Collaboration, Nucl.Phys. B299 (1988) 1-6
 MEG Collaboration, Eur.Phys.J. C76 (2016) no.8, 434
 HFLAV Collaboration, Eur.Phys.J. C77 (2017) no.12, 895
 BaBar Collaboration, Phys.Rev.Lett. 104 (2010) 021802

Current low-energy experimental limits

Outline

1 Introduction

- 2 The Effective Field Theory approach to BSM
- 3 Low energy: limits, EFT and the matching

4 High energy: searches at the LHC

5 High energy: future colliders

🔊 Summary

Direct searches at LHC

- Signature: same-sign lepton pairs
- Assumptions on the branching ratios
- Narrow width approximation

ATLAS 7 TeV:

• Eur.Phys.J. C72 (2012) 2244

CMS 7 TeV:

• Eur.Phys.J. C72 (2012) 2189

ATLAS 13 TeV:

• Eur.Phys.J. C78 (2018) no.3, 199

CMS 13 TeV:

CMS-PAS-HIG-16-036

Current limits from LHC

CMS searches

Search for a scalar triplet
$$S = \begin{pmatrix} S^+ & \sqrt{2}S^{++} \\ \sqrt{2}S^0 & -S^+ \end{pmatrix}$$
 with degenerate masses.

 $12.9\,{\rm fb}^{-1}$ of integrated luminosity at 13 TeV

Channels:

- Pair production with decays $S^{++}S^{--} \rightarrow \ell^+ \ell^+ \ell^- \ell^-$
- Associated production with decays $S^{\pm\pm}S^{\mp} o \ell^{\pm}\ell^{\pm}\ell^{\mp}\nu$

		CMS-PAS-HIG	-16-036
Margherita Ghezzi (PSI)	The doubly charged scalar	PSI, 25.06.2018	24 / 33

Current limits from LHC

CMS searches

- $S_I^{\pm\pm}$ decaying at 100% to *ee*, $\mu\mu$, $\tau\tau$, $e\mu$, $e\tau$, $\mu\tau$;
- Benchmark points:

Benchmark Point	ее	еµ	ετ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

Lower bounds on the mass of the $S_L^{\pm\pm}$ - observed (expected) 95% CL:

Benchmark	AP [GeV]	PP [GeV]	Combined [GeV]
$100\% \Phi^{\pm\pm} ightarrow ee$	734 (720)	652 (639)	800 (785)
$100\% \Phi^{\pm\pm} \rightarrow e\mu$	750 (729)	665 (660)	820 (810)
$100\% \Phi^{\pm\pm} \rightarrow \mu\mu$	746 (774)	712 (712)	816 (843)
$100\% \Phi^{\pm\pm} ightarrow { m e} au$	568 (582)	481 (543)	714 (658)
$100\% \Phi^{\pm\pm} ightarrow \mu au$	518 (613)	537 (591)	643 (708)
$100\% \Phi^{\pm\pm} ightarrow au au$	479 (483)	396 (419)	535 (544)
Benchmark 1	613 (649)	519 (548)	723 (715)
Benchmark 2	670 (671)	465 (554)	716 (723)
Benchmark 3	706 (682)	531 (562)	761 (732)
Benchmark 4	639 (639)	496 (539)	722 (704)

 $S_R^{\pm\pm}$ may have similar kinematic properties, but potentially very different production cross sections. No associate production.

CMS-PAS-HIG-16-036

Margherita Ghezzi (PSI)

Current limits from LHC ATLAS searches

 $36.1\,\mathrm{fb}^{-1}$ of integrated luminosity at 13 TeV.

Scenarios:

•
$$\sum_{i,j=e,\mu} \mathcal{B}(S^{\pm\pm} \to \ell_i \ell_j) = 100\%$$

• $m(S_L^{\pm\pm})$ between 770 GeV and 870 GeV @ 95% C.L.
• $m(S_R^{\pm\pm})$ between 660 GeV and 760 GeV @ 95% C.L.

•
$$\mathcal{B}(S^{\pm\pm} \to \ell_i \ell_j) > 10\%$$
 (decays to τ and W are possible)
• $m(S_L^{\pm\pm})$ larger than 450 GeV @ 95% C.L.
• $m(S_R^{\pm\pm})$ larger than 320 GeV @ 95% C.L.

Eur.Phys.J. C78 (2018) no.3, 199

Width effects

- No production × decay approximation;
- some topologies that are negligible in the NWA can become relevant;

Assumptions:

- gauge sector not modified;
- Γ_S free parameter:

$$\sum_{ab,cd} \Gamma_S^{\rm part} \leq \Gamma_S$$

$$\sigma_{PP \to l_a^+ l_b^+ l_c^- l_d^-}(M_S, \Gamma_S, \lambda_{ab}, \lambda_{cd}) = \lambda_{ab}^2 \lambda_{cd}^2 \hat{\sigma}(M_S, \Gamma_S)$$

Outline

1 Introduction

- 2 The Effective Field Theory approach to BSM
- 3 Low energy: limits, EFT and the matching
- 4 High energy: searches at the LHC
- 5 High energy: future colliders

Summary

Perspective of searches at future colliders

DCS exchange in the t-channel

Margherita Ghezzi (PSI)

Limits from low energy and discovery power of LC

 λ_{11} , λ_{12} dominant

$$\lambda_{13} = \lambda_{22} = \lambda_{23} = \lambda_{33} = 0$$

Direct production Single production at CLIC

Direct production Single production at CLIC

Margherita Ghezzi (PSI)

Summary

- Doubly charged scalars arise in many BSM models, in triplets or singlets under SU(2)_L, often in connection with the neutrino masses;
- LFV low energy processes set strong limits on combination of the DCS couplings to leptons;
- future e^+e^- colliders can provide complementary bounds;
- Direct single production of the DCS is also possible at linear colliders
- due to the production of the DCS in the t-channel, future e⁺e⁻ colliders can be sensitive to mass scales of several TeV;
- direct searches have been performed at LHC by both ATLAS and CMS, setting limits on the DCS mass in the range (320, 870) GeV depending on the assumptions;
- a moderately large width ($\Gamma_S/m_S \sim$ few%) can have 10-20% effect on the cross section compared to the NWA.