

Investigating the Solid Deuterium in the PSI UCN Source Moderator

PSI LTP Seminar, 24.9.2018

Nicolas Hild

Paul Scherrer Institute, Switzerland

- What are ultracold neutrons (UCN) and their uses?
- Working principle of the UCN source at the Paul Scherrer Institute (PSI)
- Investigation and characterization of the behavior of the $D₂$ used in the PSI UCN source

Nicolas Hild LTP Seminar, PSI

What Are UCN?

• very slow neutrons, typically classified as having a **kinetic energy of ≤ 335 neV** $(8 \text{ m s}^{-1}, 3 \text{ mK})$

Nicolas Hild LTP Seminar, PSI

24.9.2018, 2

- **Valuable tools in high precision physics experiments,** e.g. measurements of free neutron lifetime and neutron electric dipole moment (nedm), for example the **nEDM (dismantled in Oct 2017) and future n2EDM experiments at PSI**
- **Precision** in experiments using UCN typically scales with $\sqrt{N} \rightarrow$ high output desired

Nicolas Hild LTP Seminar, PSI

24.9.2018, 3

- **Cold or thermal neutrons have the possibility to transfer nearly all of their kinetic energy through phonon excitation in solid deuterium (sD²)**
- **Achieve higher UCN densities than the actual Maxwell-Boltzmann distribution** at the temperature of the D_2 would be \rightarrow "superthermal" production

Nicolas Hild LTP Seminar, PSI

PSI UCN Source: Working Principle

Nicolas Hild LTP Seminar, PSI

First Step: Pulsed UCN Production

Nicolas Hild LTP Seminar, PSI

24.9.2018, 6

Second Step: Storage and Extraction

Nicolas Hild LTP Seminar, PSI

Loss of UCN in $D₂$

- Loss rate of UCN in $D_2: \lambda = \lambda (process 1) + \lambda (process 2) + \cdots$ \rightarrow small λ desired
- λ (process)=N_{scatterers} * $\sigma_{process}$ * v_{UCN} \rightarrow decrease N_{scatterers} or $\sigma_{process}$

Nicolas Hild LTP Seminar, PSI

Monitoring Para-D₂ and HD **Concentrations**

- The **pD² and HD** concentrations are **determined using Raman spectroscopy**
- The concentrations are computed from the relative line strengths in a D_2 sample

- **Maximum acceptable pD² fraction = 0.02, 0.005 to drop to nuclear absorption level**
- Thermal equilibrium ortho and para fractions follow Boltzmann statistics
- When freezing D_2 gas with a higher para fraction, this fraction decreases towards the equilibrium value of the new temperature \rightarrow seems quite straightforward

Conversion Processes: Natural Self-Conversion

- Magnetic dipole-dipole and nuclear quadrupole **interactions between neighboring D² molecules can lead to spin realignment in pD² molecules, converting them to oD²**
- Interaction is possible between 2 pD_2 or 1 oD₂ and 1 pD_2

Conversion Processes: Natural Self-Conversion

- Magnetic dipole-dipole and nuclear quadrupole **interactions between neighboring D² molecules can lead to spin realignment in pD² molecules, converting them to oD²**
- Interaction is possible between 2 pD_2 or 1 oD₂ and 1 pD_2

Conversion Processes: Natural Self-Conversion

- Magnetic dipole-dipole and nuclear quadrupole **interactions between neighboring D² molecules can lead to spin realignment in pD² molecules, converting them to oD²**
- Interaction is possible between 2 pD_2 or 1 oD₂ and 1 pD_2

- **ETH** zürich
- Magnetic dipole-dipole and nuclear quadrupole **interactions between neighboring D² molecules can lead to spin realignment in pD² molecules, converting them to oD²**
- Interaction is possible between 2 pD_2 or 1 oD₂ and 1 pD_2
- **Slow process**: τ = 1900 h in 4 K solid D₂ \rightarrow **7 months from 0.33 to 0.02 para fraction!**

Conversion Processes: Catalysis by Irradiation

• **Fraction of D² molecules gets broken up** into single deuteron atoms **by fast neutrons and γ radiation** from the spallation target

Conversion Processes: Catalysis by Irradiation

- **Fraction of D² molecules gets broken up** into single deuteron atoms **by fast neutrons and γ radiation** from the spallation target
- D atoms diffuse through the D₂ crystal and generate large magnetic field gradients, **which can convert para molecules** along the deuteron's path

- **Fraction of D² molecules gets broken up** into single deuteron atoms **by fast neutrons and γ radiation** from the spallation target
- D atoms diffuse through the D₂ crystal and generate large magnetic field gradients, **which can convert para molecules** along the deuteron's path
- **Competing process: recombination of deuterons produces room temperature equilibrium D₂** i.e. 2/3 oD₂ and 1/3 pD_2

- **680 g D² with initial 0.075 para fraction frozen in moderator, monitoring of evolution of pD² content by self-conversion and during pulsing** (8 s pulses every 300 s)
- **Data analysis ongoing, points of interest** include **limits on power deposition** in D₂ and **changes in macroscopic D² structure** during operation

- Clear that **conversion towards acceptable pD² fraction just by self-conversion and pulsing is too slow**
- Need another method to ensure high oD₂ concentration even before D₂ is transferred to the moderator vessel

Monitoring pD₂ and HD Concentrations

- **Accelerate conversion in liquid D²** at about 20 K before transfer **using Oxisorb®**
- **Starting concentration of 98 % oD²**
- **•** Both oD₂ and HD concentrations within acceptable limits from the start

Nicolas Hild LTP Seminar, PSI

- **Continuous pulsed operation leads to a decrease of UCN output**
- UCN count ratio West2/West1 increases → **UCN intensity decreases more rapidly for slower UCN**

Nicolas Hild LTP Seminar, PSI

24.9.2018, 21

Frost Model

- Most attractive idea to **explain the energy-dependent decrease: frost hypothesis**
- **Heat deposition in D² due to fast neutrons and γ radiation during pulse leads to degeneration of the D² surface**

- Simplified picture : layers of **small D² frost disks with neutron optical potential of 102 neV** form **on the bulk surface** that **increase the scatter of exiting neutrons**
- Continuous pulsing \rightarrow number of layers \rightarrow + transmission probability \rightarrow
- **UCN with Ekin < 102 neV totally reflected, for Ekin > 102 neV the reflection probability decreases with increasing Ekin**

- Visual confirmation of solid D_2 surface degradation after heat cycling, possible because setup not yet inserted into reactor contrary to PSI source moderator vessel
- **Need a procedure to reverse surface degradation**

Photos by E. Korobkina and group, NC State University

Nicolas Hild LTP Seminar, PSI

Conditioning

- Development of **surface treatment called ''conditioning''** to recover output: Reduce He cooling of moderator vessel with additional heat input using heating wires
- But **conditioning interrupts operation** → **Minimize time** needed for output recovery

Nicolas Hild LTP Seminar, PSI

- Remember: **no visual inspection possible because source is a closed system**
- **Indirect observation of D2 during conditioning through its vapor pressure** in moderator vessel

Nicolas Hild LTP Seminar, PSI

Conditioning Procedure

Nicolas Hild LTP Seminar, PSI

Conditioning Procedure

Nicolas Hild LTP Seminar, PSI

Conditioning Procedure

Nicolas Hild LTP Seminar, PSI

 60_c

55

50

45

 p_{d}

Conditioning Procedure

Nicolas Hild **LTP Seminar, PSI**

24.9.2018, 30

• **Probe UCN output during conditioning** with short 0.1 s pulses at 1.4 mA in quick 2 min succession \rightarrow minimal interference with conditioning process

Nicolas Hild LTP Seminar, PSI

24.9.2018, 31

Interpretation

Nicolas Hild LTP Seminar, PSI

Interpretation

Nicolas Hild LTP Seminar, PSI

Interpretation

Nicolas Hild LTP Seminar, PSI

Resulting Output

- **Conditioning helped to reach new record UCN outputs at PSI**
- Insights will be used to **ensure high UCN output for next experiments and improve the sensitivity of the neutron EDM measurements**

Nicolas Hild LTP Seminar, PSI

Summary

- **•** Accelerated para to ortho D₂ conversion due to irradiation has been measured for D₂ **filled into the PSI UCN source moderator**, which may for example allow to determine limits for the energy deposition in $D₂$
- The **PSI UCN source shows short-term decrease** in its output, even though molecular losses are kept under control and impurities are monitored with Raman spectroscopy
- The short-term decrease can be explained with **D² frost forming on top of the bulk**
- **Conditionings**, short periods of reduced cooling and heat input, are applied to **counter the daily decrease**
- **Refinement of the conditioning** procedure has allowed the PSI source to **improve its average UCN output**, helping the **nEDM and future experiments** to further **improve their sensitivity**

Thank you for your attention

Nicolas Hild LTP Seminar, PSI

Backup Slides

Nicolas Hild LTP Seminar, PSI

Nicolas Hild LTP Seminar, PSI

24.9.2018, 39

- Similar to ${}^{1}H_2$, D₂ has two spin isomers called ortho and para D₂
- D_2 is a homonuclear diatomic nuclear and D has integer nuclear spin (ground state S = 1) \rightarrow system of two undistinguishable bosons \rightarrow wave function must be symmetric under exchange of the deuterons
- $\Psi_{tot} = \Psi_{vib} \Psi_{rot} \Psi_{spin}$, where Ψ_{tot} must be symmetric and Ψ_{vib} is always symmetric
- For Ψ_{tot} to be symmetric, the following combinations result

- Ortho states more stable than para, but self-conversion very slow (τ = 80 days)
- In terms of UCN production, a high para content leads to a high number of para to ortho conversions through interaction with UCN, resulting in a high increase in kinetic energy of the neutron and effectively eliminating the UCN

Nicolas Hild LTP Seminar, PSI

• Example of West2/West1 ratio change with all port shutters open

Nicolas Hild LTP Seminar, PSI

24.9.2018, 41

Lid heating during operation with high cooling power does not eliminate the frost

Nicolas Hild LTP Seminar, PSI

24.9.2018, 42

arxiv:1804.08616v2

Nicolas Hild LTP Seminar, PSI

24.9.2018, 43

• The pressure inside the moderator vessel shows a typical evolution during conditioning

Nicolas Hild LTP Seminar, PSI

24.9.2018, 44

Integrated Current vs Pressure during Conditioning

• **Further evidence for D2 structures building up during operation**: the more we pulse until the next conditioning, the higher the $D₂$ pressure during conditioning

Nicolas Hild LTP Seminar, PSI

Cold Moderator Vessel

Nicolas Hild LTP Seminar, PSI

24.9.2018, 46