

The Quest for μ -> e γ and its Experimental Limiting Factors at Future High Intensity Muon Beams

G. Cavoto, A. Papa, FR, E. Ripiccini and C. Voena Eur. Phys. J. C (2018) 78: 37

Lepton Flavor Conservation in the Standard Model

- Lepton Flavor conservation in the Standard Model (SM) is an *accidental symmetry*, arising from the particle content of the model
- Generally violated in most of New Physics (NP) models

"Charged LFV (cLFV) is THE signature for New Physics" — A. Schöning

cLFV and direct NP searches at the LHC

- cLFV rates strongly depend on the details of the flavor structure of new physics:
 - even within the same model, sLFV constraints can be much stronger or much weaker than LHC constraints
 - LHC searches still leave a lot of place for cLFV

STRONG COMPLEMENTARITY

L. Calibbi et al., Eur. Phys. J. C72 (2012) 1863

cLFV searches in the muon sector - the naive view

- cLFV searched for in muon decays
 (μ -> e γ, μ -> e e e) and μ -> e
 conversion in nuclei
- Effective Field Theory (EFT) approach (tree level):
 - μ -> e γ sensitive to dipole operator
 - µ -> e e e and µ N -> e N sensitive to both dipole and 4fermion operators

Naive conclusion: the upcoming μ -> e conversion experiments will overcome the muon decay experiments

cLFV searches in the muon sector - the full view

- Operators mix at the loop level:
 - μ -> e γ also sensitive to
 4-fermion operators
 - μ -> e γ gives the strongest bound to dipole operators in some scenarios

A. Crivellin et al., JHEP 1705 (2017) 117

Even in the era of the upcoming μ -> e conversion experiments, μ -> e γ (and μ -> e e e) will continue to play a crucial role

2000

2010

2020

History of cLFV searches

Hincks & Pontecorvo [Phys. Rev. 73 (1948) 257] muon is not an "excited COSMIC electron" MUONS $\mu \rightarrow \theta \gamma$ 10-2 10⁻³ μN→ eN STOPPED 10-4 $\mu \rightarrow e e e$ **PION BEAMS** 10⁻⁵ 10⁻⁶ 10-7 ٩, 10⁻⁸ 10⁻⁹ 10⁻¹⁰ Lokanathan & Steinberger 10-11 MUON [Phys. Rev. A 98 (1955) 240] 10-12 **BEAMS** lepton flavors 10⁻¹³ 10-14 10⁻¹⁵ 10⁻¹⁸ 10-17 1940 1950 1960 1980 1990 1970

MEG Experiment [Eur.Phys.J. C76 (2016) 8, 434] $BR(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13}$

6

2030

Year

Muon beams for $\mu \rightarrow e \gamma$

- Muon beams are obtained from proton beams stopped on a target, through the decay of pions
 - clean and intense 28 MeV/c muon beams from pions decaying at rest at the target surface (surface muons)
- Continuous (to avoid pileup) positive (to avoid capture by nuclei in the stopping target) muon beams are used for cLFV in muon decays at rest
- The Paul Scherrer Institut (PSI, Villigen, CH) currently delivers the most intense DC muon beams (up to $10^8 \,\mu/s$)

Accidental Background

28 MeV/c muons are stopped on a thin target

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Radiative Muon Decay (RMD)

Ingredients for a search of $\mu \rightarrow e \gamma$

Reconstruct the Photon Energy

The MEG Experiment

MEG-II

 The MEG experiment is undergoing an upgrade which involves all sub-detectors

MEG-II status

TC built and commissioned in 2016-2017 $\sigma_T \sim 35 \text{ ps}$

First photons in the upgraded XEC in 2017 $\sigma_E \sim 1\% @ 52.8 \text{ MeV}$

New DC fully assembled and installed in 2018 σ_E ~ 130 keV

MEG-II status

What next?

G. Cavoto, A. Papa, FR, E. Ripiccini and C. Voena *Eur. Phys. J. C (2018) 78: 37*

High Intensity Muon Beams

- High intensity muon beams are crucial in the search for cLFV
- A few projects to get muon beams 1 or 2 orders of magnitude more intense than now are under study around the world:
 - HiMB @ PSI
 - MuSIC @ RCNP (Osaka, Japan)
 - prospects for DC muon beams at PIP-II (Fermilab, USA) are under studies

The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of $\sim 10^{10}\,\mu/sec$ (x100 the MEG-II beam)
- Optimization of the beam optics:
 - improved muon capture efficiency at the production target
 - improved transport efficiency to the experimental area

x4 μ capture eff. x6 μ transport eff.

1.3 x 10¹⁰ μ/s

in the experimental area with 1400 kW beam power

Production target

- The ring cyclotron at PSI also serves a **neutron spallation source** (SINQ) downstream of the π/μ production target
 - the proton beam need to be mostly preserved
 -> thin production target

The MuSIC Project @ RCNP

- At RCNP in Osaka (Japan) the goal is to fully exploit the proton beam power with a thick production target:
 - 10⁶ μ per Watt of beam power (vs. 10⁴ μ /W at HiMB)

Thick production target π capture solenoid

4 x 10⁸ μ/s

at the production target with 400 W beam power

S. Cook et al., Phys. Rev. Accel. Beams 20 (2017)

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Accidental Background

Francesco Renga - LTP Seminar, PSI, 26 November 2018

Toward the next generation of μ -> e γ searches: Photon Reconstruction

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

Francesco Renga - LTP Seminar, PSI, 26 November 2018

Toward the next generation of μ -> e γ searches: Photon Reconstruction

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

γ Reconstruction: Limiting factors – Calorimetry

•	Photon Statistics	Scintillator	$egin{array}{cl} \mathbf{Density} \ [\mathbf{g/cm}^3] \end{array}$	${f Light Yield} \ [ph/keV]$	Decay Time [ns]
•	Scintillator time constant	LaBr ₃ (Ce)	5.08	63	16
•	Detector segmentation	LYSO	7.1	27	41
		YAP	5.35	22	26
		LXe	2.89	40	45
		NaI(Tl)	3.67	38	250
		BGO	7.13	9	300

- LaBr₃(Ce) a.k.a. *Brillance* looks a very good candidate:
 - our simulations & tests indicate that ~ 800 keV resolution can be reached
 - extreme time resolution (~ 30 ps)
 - large acceptance
 - very expensive

γ Reconstruction: Limiting factors — Conversion

- Interactions in the converter (conversion probability, e+e- energy loss and MS)
- Large Z materials (Pb, W) give the best compromise of efficiency vs. resolution

 Can take advantage of the photon direction determination form the e+e- reconstruction

$$d_{e\gamma}^{\text{vtx}} = \sqrt{\left(\frac{X_e - X_\gamma}{\sigma_X}\right)^2 + \left(\frac{Y_e - Y_\gamma}{\sigma_Y}\right)^2}$$

Francesco Renga - LTP Seminar, PSI, 26 November 2018

Toward the next generation of μ -> e γ searches: Positron Reconstruction

- Tracking detectors in a magnetic field are the golden candidates:
 - high efficiency
 - better resolutions w.r.t. calorimetry ($\sigma(E_e)$ down to 0.2% vs. > 1%)
- Performances are limited by Multiple Scattering of 52.8 MeV positrons in target and tracker materials
 - Need a very light detector (the MEG drift chambers gave ~ 2 x 10^{-3} X₀ over the whole positron trajectory, 200 µm silicon equivalent)
 - Silicon trackers are likely to be not competitive with gaseous detectors in terms of resolutions (C-H. Cheng et al. arXiv: 1309.7679)

Positron Reconstruction at High Beam Rate

Expected aging (gain loss) in the MEG-II Drift Chamber

Would a gaseous detector be able to cope with the very high occupancy at > $10^9 \,\mu/s^2$

Photon and Positron timing

- Timing plays a crucial role in μ -> e γ searches (accidental coincidences!!!):
 - need a very good positron and photon timing
 - $\sigma(\text{Te}\gamma) \sim 80 \text{ ps in MEG-II}$
- LiBr₃(Ce) calorimeters + positron scintillating counters like in MEG can give the required performances
- For photon conversion, need to detect e⁺ or e⁻ in a **fast detector**

What about stacking multiple layers?

Photon and Positron timing

- Timing plays a crucial role in μ -> e γ searches (accidental coincidences!!!):
 - need a very good positron and photon timing
 - $\sigma(\text{Te}\gamma) \sim 80 \text{ ps in MEG-II}$
- LiBr₃(Ce) calorimeters + positron scintillating counters like in MEG can give the required performances
- For photon conversion, need to detect e⁺ or e⁻ in a **fast detector**

Effective converter material with lower Z

Worse compromise of efficiency vs. resolution

An active conversion layer

- Low Z active material for timing deteriorates the best efficiency/ resolution configuration
 - the active layer must be as thin as possible
- Scintillators have poor "timing to thickness" figures (~ 1 ns for 250 μm fibers)

FAST SILICON DETECTORS

 R&D on going for PET application (TT-PET)

M. Benoit et al., JINST 11 (2016) no. 03, P03011

Muon Stopping Target

- The target plays a crucial role in determining the positron angular resolution, due to the Multiple Coulomb Scattering:
 - target must be as thin as possible

enough thickness to stop ~ all muons

- In order to stop a significative fraction of muons, it must be at the Bragg peak:
 - muons not stopped by the target are stopped in the gas right after, giving background without contributing to the signal

Optimal target Be, 90 µm

Multiple Targets?

- Does it make sense to use multiple thinner targets in sequence?
 - probably not: many muons would decay in the gas between the two targets (background, efficiency loss,...)

- Does it make sense to use multiple staggered targets?
 - probably yes: with photon direction from conversion, it could reduce the acc. bkg. by a factor of 2

A Tentative Design

Possible Scenarios

CALORIMETRY

Resolution									
Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector					
		conservative	optimistic	conservative	optimistic				
$\theta_{e\gamma} / \phi_{e\gamma} \text{ [mrad]}$	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9				
$T_{e\gamma}$ [ps]			30						
E_e [keV]			100						
E_{γ} [keV]			850						
Efficiency [%]		42% (70%	% γ acceptance)						

PHOTON CONVERSION

Resolution									
Variable	w/o vtx detector	w/ TPC vtx	detector	w/ silicon vtx detector					
		conservative	optimistic	conservative	optimistic				
$\theta_{e\gamma} / \phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9				
$T_{e\gamma}$ [ps]			50						
E_e [keV]			100						
E_{γ} [keV]			320						
Efficiency [%]			1.2 (1 LA	YER, 0.05 X ₀)					

Discussion

- Projecting the μ -> e γ sensitivity to future experiments requires to take into account many subtle experimental effects
- Most of the experimental limiting factors will come from the physics of the particle interaction with the detector materials (MS, dE/dx, etc.):
 - almost no room to break these limits by incremental improvements of the detector technologies!
- Significative technological efforts still needed to sustain high intensity muon beams and to reach these limits (detector aging, pileup rejection, etc.)

Expected Sensitivity

A few 10^{-15} seems to be within reach for a 3-year run at ~ $10^8 \mu$ /s with calorimetry (*expensive*) or ~ $10^9 \mu$ /s with conversion (*cheap*)

Fully exploiting 10¹⁰ µ/s and breaking the 10⁻¹⁵ wall seem to require a *novel experimental concept*

Backup

MEG-II Highlights - The LXe Calorimeter

We developed large-area (12x12 mm²), UV-sensitive MPPCs to cover the inner face of the LXe calorimeter

Better Resolution, better pile-up rejection

$$\sigma_{\rm E} \sim 1\%$$
, $\sigma_{\rm position} \sim 2/5$ mm (x,y/z)

First events/spectra from 2017 data

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Calibration with dedicated laser

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Already reached the design resolution

MEG-II Highlights - The Drift Chamber

Wiring, assembly and sealing have been completed

Had to face severe problems of wire fragility in presence of contaminants + humidity

On beam in Fall 2018

 $\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad, 2x larger positron efficiency

MEG-II Highlights - RDC, DAQ, Trigger

50% of acc. background photons come from RMD w/ positron along the beam line

Can be vetoed by detecting the positron in coincidence with the photon

A new detector (LYSO + plastic scint.) built and tested in 2017 -> 16% better sensitivity

Trigger and DAQ will be integrated in a single, compact system (WaveDAQ)

Also provides power and amplification for SiPM/MPPC

Successfully tested in 2017 with XEC, TC and RDC

MEG-II schedule & sensitivity

Silicon detector momentum resolution

Mu3e momentum resolution (B = 1T) 4x worse than MEG-II

A. Kozlinskiy, Mu3e Collaboration, CTD/WIT 2017

DeeMee / COMET / Mu2e

Mu3e

R&D almost completed Commissioning will start soon Data taking expected > 2020

Expected BR UL ~ 10⁻¹⁶