PAUL SCHERRER INSTITUT

Ph.D. Chia-Ying Huang :: Postdoc Research Fellow :: MX group, Paul Scherrer Institut

In situ serial crystallography for membrane protein structure determination

21st September 2018, Empa Postdocs-II & PSI-FELLOW II-3i RETREAT 2018

- Structural determination of membrane protein by using lipid cubic phase method
- *In situ* method for delivering the sample for X-ray diffraction
- Successful cases from macromolecular crystallography beamlines in SLS

Structural determination of membrane protein by using lipid cubic phase method

$MP \rightarrow crystals \rightarrow X-ray \rightarrow MP structure$

Lipid cubic phase (LCP)/in meso crystallization

Mixing devices

- Li, D., Boland, C., Walsh, K., & Caffrey, M. J. Vis. Exp. 67: e4000. 2012.
- Li, D., Boland, C., Aragão, D., Walsh, K., & Caffrey, M. J. Vis. Exp. 67: e4001. 2012.
- Caffrey, M., Porter, C. J. Vis. Exp. 45: e1712. 2010.
- Caffrey, M., Cherezov, V. Nature Protocols. 4:706-731. 2009.

Lipidic cubic phase bolus

Harvest single crystal in one loop and do it many times

In situ method for delivering the sample for X-ray diffraction

In meso in situ crystallization plates (IMISX)

How to harvest the crystals from the IMISX plate

Open the glass plate with glass cutter and retrieve the IMISX well with blade

Huang C.-Y., Olieric V., Ma P., Panepucci E., Diederichs K., Wang M. and Caffrey M. Acta Cryst. (2015). D71, 1238-1256.

How to harvest the crystals from the IMISX plate

Open the glass plate with glass cutter and retrieve the IMISX well with blade

IMISX data collection at cryogenic temperature

Data collection at 100K

Huang C.-Y., Olieric V., Ma P., Howe N., Vogeley L., Liu X., Warshamanage R., Weinert T., Panepucci E., Kobilka B., Diederichs K., Wang M. and Caffrey M. Acta Cryst. (2016). D72, 93-112. Broecker et al., 2018. Nature Protocol.13. 260.

Automated data collection

Grid scan and spots evaluation

20 x 20 µm beamsize, 50 x 50 grids, 100 Hz

ADP and ADM

IMISX plate

Feedback to data processing

- Wojdyla et al., J Synchr. Rad. (2018) 25. 293-303.
- Basu et al., J Synchr. Rad. (2018) submitted.

Successful cases from macromolecular crystallography beamlines in SLS

Application of the IMISX on enzyme for peptidoglycan biosynthesis, first de novo structure solved by IMISX method

The enzyme involved in the processing of carrier lipids required for the synthesis of bacterial cell walls → important target for antibiotic design (2018) Nat Commun 9: 1078, doi:10.1038/s41467-018-03477-5

25 um COC film

140 um 96-well spacer

Add HA-solution

Phasing the structure

Continually developing thinner material for IMISX plate

G protein-coupled receptors (GPCRs)
Thinner material.

IMISX, IMISX-experimental phasing and automated data collection

- No crystal harvesting
- Ligand- and HA-soaking capabilities
- Reduced background with thin material (COC, COP, SiN)
- Automated data collection at both room and cryogenic temperature
- Real-time data processing/selection

Beamline	PXI (X06SA)	PXII (X10SA)	PXIII (X06DA)
Source	U19	U19	2.9T Superbend
Energy range	6.0 – 17.5 keV	6.5 – 20.0 keV	5.5 – 17.5 keV
Flux, phs/s (12.4 keV, focused beam)	2 × 10 ¹¹ <-> 2 × 10 ¹²	2 × 10 ¹²	5 × 10 ¹¹
Beamsize, µm ² (with focusing, slits)	2 × 1 <-> 100 × 100 (fast beam size change)	50 × 10 30 × 10, 20 × 10, 10 × 10	80 × 45 µm²
Goniometer	Micro-diffractometer (SmarGon coming)		Multi-axis PRIGo
Detector	EIGER 16M	PILATUS 6M	PILATUS 2M
Data collection time	2 – 3 minutes		
Sample changer	IRELEC CATS		

Boehringer Ingelheim

Wir schaffen Wissen – heute für morgen

My thanks go to

Paul Scherrer Institut/Swiss Light
 Source

Drs. Meitian Wang, Vincent Olieric, Ezequiel Panepucci, Shibom Basu, Justyna Wokdyla, Jakub Kaminski, Rangana Warshamanage, Tobias Weinert, Isabelle Martiel, Nathalie Meier, May Sharpe.

• Trinity College Dublin Drs. Martin Caffrey, Pikyee Ma, Nicole Howe, Lutz Vogeley and Dietmar Weichert

 University Liege Meriem Ghachi and Fred Kerff
 Stanford University Medical School and Tsinghua University Drs. Brian Kobilka and Xiangyu Liu
 Universität Konstanz, Germany Dr. Kay Diederichs

PSI fellowship

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701647

